

This project has received funding from the European Union’s Horizon 2020 Programme
(H2020-SC1-2016-CNECT) under Grant Agreement No. 727560

Collective Wisdom Driving Public Health Policies

D6.4 Integration of Results v1

 Project Deliverable

D6.4 Integration of Results v1 03/04/2018

2/50

D6.4 Integration of Results v1

Work Package: WP6

Due Date: 28/02/2018

Submission Date: 03/04/2018

Start Date of Project: 01/03/2017

Duration of Project: 36 Months

Partner Responsible of Deliverable: ENG

Version: 1.1

Status:

 Final Draft Ready for internal Review

 Task Leader Accepted WP leader accepted

 Project Coordinator accepted

Author name(s):

Antonio De Nigro, Francesco Torelli, Domenico Martino (ENG);

Thanos Kiourtis, George Peppas, Argyro Mavrogiorgou, Ilias

Maglogiannis (UPRC); Andreas Menychtas, Christos Panagopoulos

(BIO); Maroje Sorić (ULJ); Santiago Aso (ATOS); Konstantinos

Perakis (SILO); Salvador Tortajada (HULAFE); Sokratis Nifakos (KI);

Jan Janssen, Serge Autexier (DFKI); Usman Wajid (ICE); Thanos

Kosmidis (CRA); Ricardo Jimenez-Peris, Pavlos Kranas (LXS);

Marta Patiño (UPM); Vegard Engen (IT-INN); Mitja Lustrek (JSI)

Reviewer(s): Pavlos Kranas (LXS) Stefanos Malliaros (UPRC)

Nature: R – Report D – Demonstrator

Dissemination level:

 PU – Public

 CO – Confidential

 RE – Restricted

REVISION HISTORY

Version Date Author(s) Changes made

0.1 17/01/2018 ENG ToC shared with the participants.

0.2 25/01/2018 ENG, SILO, IT-INN Updated ToC shared with participants.

0.3 16/02/2018 ENG, UPRC,
SILO, ICE, ATOS,
LXS

First draft of executive summary, introduction,
first integration cycle architecture, HHR
Manager, Data sources and Gateways, Data
Converter, Data Cleaner, Data Store,
Aggregator. Added sections for risk
stratification tool and user interface.

0.4 07/03/2018 ENG, UPRC,
SILO, ICE, ATOS,
LXS, KI, JSI, IT-
INN, LXS, UPM,
CRA, ULJ, BIO,
DFKI, HULAFE

Added sections Multimodal Forecasting and
Causal analysis module, Visualization, Risk
Stratification tool and Data anonymization.
Updated sections first integration cycle
architecture, HHR Manager, Data sources
and Gateways, Data Converter, Data
Cleaner, Data Store and Aggregator. Added

D6.4 Integration of Results v1 03/04/2018

3/50

conclusions.

0.5 23/03/2018 LXS, UPRC Peer review.

1.0 29/03/2018 ENG, JSI, SILO,
UPRC

Peer review remarks fixed. Final release.

1.1 03/04/2018 ATOS Quality Review. Submission to EC.

D6.4 Integration of Results v1 03/04/2018

4/50

List of acronyms

ACID Atomicity Consistency Isolation Durability

API Application programming interface

CEP Complex Event Processing

CSV Comma Separated Variable

HHR Holistic Health Record

HL7 Health Level Seven International

FHIR Fast Healthcare Interoperability Resources Specification

JDBC Java Data Base Connectivity

JWT JSON Web Token

OLAP Online Analytical Processing

OLTP Online Transaction Processing

PDT Portable Data Terminal (stock keeping device)

POJO Plain Old Java Object

REST Representational State Transfer (alternative to SOAP)

SQL Structured Query Language

XML Extensible Markup Language

https://it.wikipedia.org/wiki/Application_programming_interface

D6.4 Integration of Results v1 03/04/2018

5/50

Contents

1. Executive Summary ... 6

2. Introduction .. 7

2.1. Objectives ... 7

2.2. First cycle architecture .. 7

3. Integration of results ... 10

3.1. Data anonymization, user authentication and authorization 10

3.2. HHR Manager ... 13

3.3. Data Sources and Gateways ... 17

3.4. Data converter .. 21

3.5. Data cleaner .. 27

3.6. Data store and big data analytics .. 31

3.7. Aggregator .. 40

3.8. Multimodal Forecasting and Causal analysis module .. 42

3.9. Risk Stratification tool .. 45

3.10. Visualization component .. 45

4. Conclusions ... 49

5. References ... 50

List of figures

Figure 1 First cycle of CrowdHEALTH architecture .. 8

Figure 2 Query composition .. 46

Figure 3 Query results visualization ... 47

Figure 4 Dashboard ... 48

D6.4 Integration of Results v1 03/04/2018

6/50

1. Executive Summary

The present document describes the results of the first development and integration cycle of

CrowdHEALTH, as well as the work performed to achieve such results. Achievements are

compared to the integration plan reported in D6.1, describing the level of completeness of the

developed functionalities and integration of each component, highlighting possible delays or

differences with respect to the plan, and reporting the most important issues already solved or

still to be solved during this activities, when occurred. When applicable, possible evolution of

the components are introduced, also if not yet confirmed, in order to provide insights for the

second version of the CrowdHEALTH system.

The set of produced components are firstly represented by a simplified architectural diagram,

then the provided interfaces of each component are described in details, explaining which

interactions shown in the architecture diagram are implemented by each interface or class.

D6.4 Integration of Results v1 03/04/2018

7/50

2. Introduction

2.1. Objectives

The integration plan for the development and testing of the CrowdHEALTH system, described

in deliverable D6.1 [1], defines an iterative approach composed of three cycles, each one

lasting 12 months, during which the system is implemented and incrementally extended to

satisfy the identified user requirements. The present document aims to describe the results of

the first development and integration cycle performed during the first year of the project, and

to report the work that has been performed to achieve such results with respect to the

integration plan.

The document is structured as follows:

– Section 1 reports the executive summary of this document;

– Section 2 provides an introduction to the present document, describing its objectives

(section 2.1), and an overview of the architecture of the CrowdHEALTH system

implemented during the first year of the project;

– Section 3 describes the integration of the results. For each component that has been

implemented during the reporting period, a sub-section has been introduced reporting

the list of implemented functionalities, the list of integrated components, the detailed

description of the implemented technical interfaces and operations, the performed

work and the most relevant encountered issues during the development activities.

– Section 4 reports the conclusions resulting from the integration of the results.

2.2. First cycle architecture

Based on the identified project goals and the collected technical and use case requirements

(as reported in D2.1 [2]), and on the first version of the overall architecture of CrowdHEALTH

(as reported in D2.4 [3]), the following architecture has been implemented (Figure 1) during

the first cycle development. Shortly, Figure 1 represents all the components that have been

implemented – in the form of prototype, during the 1st year of the project, accompanied with

the interactions among them.

D6.4 Integration of Results v1 03/04/2018

8/50

Figure 1 First cycle of CrowdHEALTH architecture

The first cycle of the architecture of the CrowdHEALTH platform consists of two (2) main

pillars, the Data & structures, and the Health analytics.

In the context of Data & structures, as it is outlined in Figure 1, the whole pillar is divided into

three (3) different sub-pillars: (i) Data ingestion, (ii) Data integration, and (iii) Data processing,

while the CrowdHEALTH Data Store belongs to the whole context of Data & Structures, as it

is considered to be vital for the three (3) sub-pillars.

To begin with, in the Data ingestion sub-pillar, the CrowdHEALTH platform takes as an input

data from the healthcare providers’ data stores. The Data anonymization component takes as

an input this data to perform anonymization techniques, achieving the required data disclosure

and privacy requirements. Sequentially, the anonymized data is being sent to the Gateway

component, for solving at the same time connectivity and communication issues.

Sequentially, in the Data integration sub-pillar, the Gateway sends to the Data cleaning &

Sources reliability component all the incoming anonymized data. In that case, the adaptive

selection of the incoming sources occurs, whereas all the data derived from the chosen

sources, is totally cleaned, by identifying and removing potential errors and inconsistencies.

Therefore, the Data cleaning & Sources reliability component sends back to the Gateway all

the cleaned data, which is then being sent to the Data conversion component. This

component uses the HHR manager component, which is responsible for instantiating HHR

objects that are returned to the Data conversion component. In sequel, the Data conversion

component acquires as an input all the cleaned data, the new HHRs’ objects, and convert

them into HL7 FHIR format, making them structurally and terminologically interoperable.

D6.4 Integration of Results v1 03/04/2018

9/50

Consequently, this data is sent to the Data aggregation component, which is responsible for

aggregating them into the HHRs that will be finally stored into the CrowdHEALTH Data Store.

Moreover, as for the Data processing sub-pillar, the Big data analytics is implemented,

performing real-time big data analytics on the stored data (i.e. HHRs, historical citizen data),

enabling correlations and extraction of situational factors among bio-signals, physical

activities, medical data patterns, clinical assessment, and lab exams.

In the context of Health analytics, analytical techniques are being utilized for carrying out

Causal analysis for identifying the properties that affect the performance of policies and care

plans, as well as Multimodal forecasting for estimating the applicability and effectiveness of

health policies, and their variations and combinations to particular population segments, upon

all the gathered data. Each one of these components works independently, acquiring as an

input from the CrowdHEALTH Data Store all the constructed HHRs, that result from the

relational tables that are stored in it. Additionally, it uses the Big data analytics component so

as to perform its queries upon the stored data. The latter information will be provided to

different entities in the ecosystem through the Data visualization component that is integrated

with the Big Data Platform, and uses its exposed functionalities to perform both simply

information retrieval and Big Data Analytics operations.

D6.4 Integration of Results v1 03/04/2018

10/50

3. Integration of results

3.1. Data anonymization, user authentication and authorization

Implemented functionalities

The following list depicts the functionalities implemented by the Data anonymization

component, which is responsible for performing anonymization techniques to achieve the

privacy protection requirements. The exploitation and the usage of the Data anonymization

component can be found in D4.20.

– Import of de-anonymized data via either CSV files or connection to external databases.

– Configuration of anonymization parameters by setting direct and indirect identifiers,

configuring the parameters of the privacy model, and setting the generalization and

suppression policies.

– Investigation of the available solutions that achieve k-anonymity.

– Measuring data quality of the anonymized data.

– Export of the anonymized data info CSV format.

The following list shows the working functionalities of the user authentication and authorization

component during the first reporting period. The above-mentioned component is responsible

for providing a single endpoint for user authentication for all the endpoints of the

CrowdHEALTH system. The exploitation of the user authentication and authorization

component can be found in D4.20.

– Registration of CrowdHEALTH applications and users.

– Management of CrowdHEALTH applications and users.

– Allow CrowdHEALTH applications to authenticate users via the internal OpenID

Connect user base.

Integrated components

The Data anonymization component does not use any other CrowdHEALTH component.

The user authentication module uses the PDT and Visualization components, but the

integration will be performed in the 2nd reporting period.

Technical interfaces

The data anonymization component does not offer any public interfaces, due to security

considerations regarding data protection. The Data anonymization component requires local

installation where the de-anonymized e-health data are located, to avoid transmission over the

internet and potential security issues. Subsequently, if the healthcare providers do not have

D6.4 Integration of Results v1 03/04/2018

11/50

their own anonymization tools and procedure, they can use the data anonymization virtual

machine which is uploaded in the GITLAB server.

The user authentication and authorization module is a web based and can be triggered by the

registered application and web users. The technical interfaces available from the above-

mentioned module are described below.

Operation ID 3.1.2: User Registration.

URI pattern https://crowdhealthidp.ds.unipi.gr/identity/register.

Input Username: Contains the desired user’s username

First Name: It is the user’s first name.

Display Name: It is the desired user’s display name.

Last Name: It is the user’s last name.

Password: It is the user’s desired Password.

Email: It is the user’s email.

Output After the user registration, an administration is responsible for

enabling the user account. With this process, we can eliminate

malicious user registrations.

Operation ID 3.1.3: User authentication.

URI pattern Authorization Endpoint:

https://crowdhealthidp.ds.unipi.gr/oxauth/restv1/authorize

Token Entpoint:

https://crowdhealthidp.ds.unipi.gr/oxauth/restv1/token

User Information Entpoint:

https://crowdhealthidp.ds.unipi.gr/oxauth/restv1/userinfo

Methods Authorization Endpoint:

The GET method is used as the first step, where the application
prepares an authentication request containing the required

https://crowdhealthidp.ds.unipi.gr/oxauth/restv1/token
https://crowdhealthidp.ds.unipi.gr/oxauth/restv1/userinfo

D6.4 Integration of Results v1 03/04/2018

12/50

parameters.

The Response from the Authorization Endpoint uses the GET
method, and includes an authorization code.

Token Endpoint:

The authorization code is received by the application and is sent via
the POST method to the Token Endpoint.

The Token Endpoint replies with an access token and an ID token
using the POST method.

User Information Endpoint:

The application uses the DI token to authorize the user. Next, the

application can use the access token to access the User Information

Endpoint for requesting user claims.

Input Authorization Endpoint:

scope=openid , response_type=code , client_id=<unique client id> ,
redirect_uri=<client’s redirect uri>

Token Endpoint:

grant_type=authorization_code , code=<authorization_code> ,
redirect_uri=<client’s redirect uri>, scope=openid , client_id=<unique
client id>, client_secret=<unique client secret>

User Information Endpoint:

acess_token=<access_token value>

Performed work

During the first reporting period, all the functionalities that are described in D4.17 regarding

the data anonymization, user authentication and authorization have been implemented. The

Data anonymization component has been released to the use case partners to anonymize the

data that will be used during the use cases, while the user authentication and authorization

server has been setup in the UPRC premises. Although in D6.1 the user authentication and

authorization module was not planned for the first year of the project, it has been considered

essential for the first cycle demonstrations, so that the release of this tool has been

anticipated.

D6.4 Integration of Results v1 03/04/2018

13/50

Identified issues and possible evolutions

The main identified issue regarding the Data anonymization component is the lack of a

network API to anonymize data. Although the software of the data anonymization component

does not offer network connectivity, during the next reporting period the feasibility of

integrating a network service over the data anonymization tool will be investigated. This

process will be documented in the upcoming reporting period.

The main issues identified during the implementation of the user authentication and

authorization module is the selection of the most suitable software for the requirements of

CrowdHEALTH. Due to the nature of the project, it was essential to develop a solution that is

compliant with the certification of the OpenID foundation, so as to ensure that the protocol

stack is implemented correctly to avoid any potential security issues.

3.2. HHR Manager

Implemented functionalities

The following list reports the functionalities, at conceptual level, that have been implemented

by the HHR Manager component. Details about their implementation and usage are reported

in the deliverable D3.3.

– Instantiating Java POJO HHRs for physiological measurements.

– Instantiating Java POJO HHRs for fitness measurements.

– Instantiating Java POJO HHRs for symptoms.

– Instantiating Java POJO HHRs for diagnoses.

– Instantiating Java POJO HHRs for medications.

– Instantiating Java POJO HHRs for medical procedures.

– Instantiating Java POJO HHRs for nutrition.

– XML serialization and deserialization of HHR Java objects.

Integrated components

The HHR Manager do not use, and thus do not integrate, any other CrowdHEALTH

component.

D6.4 Integration of Results v1 03/04/2018

14/50

Technical interfaces

The HHR Manager is a library that implements the public classes HHRFactory and Serializer,

which offer the following public operations to the Data Converter component.

HHRFactory

The following operations may be used by the Data Converter to instantiate Java POJO HHR

objects.

Operation ID 3.2.1

Signature HHR create(String hhrTypeName)

Create an empty HHR object of the type specified in hhrTypeName
parameter. A runtime exception is thrown if hhrTypeName is an
invalid HHR type.

Input hhrTypeName: The name of the type of HHR to be created (e.g.
“Patient” or “ClinicalFinding.ANEMIA”). It must be a valid HHR type
name, among the types defined in the HHR model.

Output An empty object of the specified type hhrTypeName, implementing
the HHR interface.

Operation ID 3.2.2

Signature <T extends HHR> T create(HHRType<T> type)

Create an empty HHR object of the specified type. A runtime
exception is thrown if type is an invalid HHR type.

Input type: The HHRType to be instantiated (e.g. ClinicalFinding.ANEMIA).
Admitted values are the interfaces contained in the package
eu.crowdhealth.hhr.model.

Output An empty HHR object of type specified in the argument.

Operation ID 3.2.3

Signature <T extends HHR> T create(Class<T> hhrType)

Create an empty HHR object of the specified hhrType. A runtime

D6.4 Integration of Results v1 03/04/2018

15/50

exception is thrown if hhrType is an invalid HHR type descriptor.

Input hhrType: The descriptor of the HHR model interface to be
instantiated (e.g. Patient.class). Admitted values are the descriptors
of the classes contained in the package eu.crowdhealth.hhr.model,
which inherits from HHR.

Output An empty HHR object of type specified in the argument.

Serializer

The following operations may be used by the Data Converter to serialize HHR Java object to

XML format and vice versa.

Operation ID 3.2.4

Signature <T extends HHR> String toXML(T obj)

Serialize the HHR Java object obj into XML format.

Input obj: The HHR object to be serialized in XML format.

Output The XML representation of the obj HHR Java object

Operation ID 3.2.5

Signature HHR toObject(String hhrName, String xml)

Deserialize the XML representation of the HHR object of type
hhrName to its Java representation.

Input hhrName: The type name of HHR object to be deserialized.

xml: The XML representation of the HHR object to be deserialized.

Output The Java representation of the deserialized HHR object.

Operation ID 3.2.6

Signature <T extends HHR> String hhrCollectionToXML(Collection<T> objects)

Serialize in XML format and concatenate a set of HHR Java

D6.4 Integration of Results v1 03/04/2018

16/50

objects of the same type T.

Input objects: A collection of HHR Java objects of the same type T.

Output The concatenation of the XML representations of the Java objects
provided as input.

Operation ID 3.2.7

Signature Collection<HHR> hhrCollectionToObject(String xml)

Deserialize a set of HHR objects represented in XML to its Java
representation.

Input xml: The concatenated XML representation of a set of HHR objects
to be deserialized.

Output The collection of Java objects deserialized from the xml input
argument.

Performed work

During the reporting period, the HHR model specified in the deliverable D3.1 has been

implemented. All planned functionalities have been released according to the integration plan.

Additionally, a first version of the functionalities to serialize and de-serialize in XML the HHR

Java objects have been released.

Identified issues and possible evolutions

The integration of the HHR Manager with the Data Converter highlighted the need to serialize

and de-serialize HHR objects into XML format, although such functionalities was not planned

for the first year of the project. This issue has been solved by implementing and including into

the HHR Manager a first version of the Serializer class. The implemented functionalities will be

improved during the second implementation cycle, if needed.

D6.4 Integration of Results v1 03/04/2018

17/50

3.3. Data Sources and Gateways

Implemented functionalities

In the context of Data Sources and Gateways component and towards providing the

necessary processes for solving connectivity and communication issues while also enabling

multimodal data acquirement from various sources and various providers, the following

functionalities have been implemented as reported in the deliverable D3.7:

– Connect to and retrieve information from database.

– Pull information via APIs.

– Receive and extract of information from files.

– Receive and extract of information via API.

Integrated components

The list of components with which the Data Sources and Gateways is being integrated,

includes the following:

– Data Converter (to be completed).

– Data Cleaner (completed).

The integration of the Data Sources and Gateways has been accomplished via the exposed

interfaces of both the Data Converter and the Data Cleaner components. By the time of writing

of this deliverable, the integration with the Data Converter is an ongoing activity, while the

integration with the Data Cleaner component has been successfully accomplished via the

exposed interface IDataCleanerService of the Data Cleaner component.

Technical interfaces

The Data Sources and Gateways component provides one single interface, namely the

IDataCollectorService, enabling data acquisition from a variety of external data sources for the

CrowdHEALTH platform. This interface is responsible for retrieving information from the

various data source providers, offering information via databases, exposed APIs or in

specified file formats. Additionally, this interface is also responsible for receiving incoming

information pushed to the CrowdHEALTH platform by a data source provider.

The IDataCollectorService interface implements the following three endpoints:

D6.4 Integration of Results v1 03/04/2018

18/50

Authentication/Login endpoint

This endpoint is implementing the token-based authentication mechanism for the interface

and is implemented using JSON Web Token (JWT) [4].

Operation ID 3.3.1

URI pattern http://hostname[:port]/login

Methods GET: Performs the authentication of the user. In the response
headers the generated JWT is provided which is mandatory for
accessing the rest of the endpoints of the interface. The
authentication mechanism is provided out of the box by Spring
security framework [5].

Input Expects a request body in the following format:
{
 “username”: “user”,
 “password”: “pass”
}

Output None

Push data endpoint

This endpoint is implementing the “Receive and extract of information from files” and “Receive

and extract of information via API” functionalities.

Operation ID 3.3.2

URI pattern http://hostname[:port]/gateway/receive/{providerId}/{datasetId}

Methods POST: Responsible for handling incoming HTTP requests in the case
where information is being pushed to the CrowdHEALTH platform.

Input Authorization: A valid JWT as received by Authentication/Login
endpoint.

providerId: The unique identifier of the provider. The acceptable values
are:

 BIO.

 CRA.

 DFKI.

 HULAFE.

datasetId: The unique identifier of the dataset for the specified provider.

http://hostname[:port]/login
http://hostname[:port]/gateway/receive/%7bproviderId%7d/%7bdatasetId%7d

D6.4 Integration of Results v1 03/04/2018

19/50

The combination of parameters providerId and datasetId is predefined
(according to the identified use cases). For each providerId the list of
acceptable values for the datasetId are displayed below:

 BIO

◦ Allergies.

◦ Biosignals.

◦ Medication.

◦ Phr.

 CRA

◦ Patient.

◦ Diagnosis.

◦ Treatment.

◦ Comorbidity.

◦ Behaviour.

◦ Coaching.

◦ Sideeffect.

 DFKI

◦ Activity.

◦ Allergen.

◦ Allergy.

◦ Annotation.

◦ Biodata.

◦ Datasource.

◦ Diet.

◦ Diettype.

◦ Dish.

◦ Ingredient.

◦ Patient.

◦ Recipe.

◦ Recipestep.

 HULAFE

◦ Emergency.

◦ Hah.

◦ Hospitalization.

◦ Labtest.

◦ Morbidity.

◦ Outpatient.

◦ Patient.

Output None

Pull data endpoint

This endpoint is implementing the “Connect to and retrieve information from database” and the

“Pull information via APIs” functionalities.

Operation ID 3.3.3

URI pattern http://hostname[:port]/gateway/{providerId}/{datasetId}

Methods POST: Responsible for handling HTTP requests in the case of
pulling information for a data source provider to the CrowdHEALTH
platform

Input Authorization: A valid JWT as received by Authentication/Login
endpoint.

providerId: the provider identifier. Supported values are:

 ULJ

 KI

datasetId: the dataset identifier. This is parameter is optional.

Output None

http://hostname[:port]/gateway/%7bproviderId%7d/%7bdatasetId%7d

D6.4 Integration of Results v1 03/04/2018

20/50

Performed work

All planned functionalities of the Data Sources and Gateways component that are included in

the integration plan have been successfully delivered on time. The Data Sources and

Gateways component supports all required functionalities and provides the necessary

interface for the integration into the CrowdHEALTH platform. A set of the integration activities

foreseen towards the full system integration, are still in progress status by the time of writing of

this deliverable.

More particularly, the table below provides the status of the performed work:

Task Status

Connect to and retrieve information from database Completed successfully

Pull information via APIs Completed successfully

Receive and extract of information from files Completed successfully

Receive and extract of information via API Completed successfully

Integration with Data Converter component Ongoing activity

Integration with Data Cleaner component Completed successfully

Identified issues and possible evolutions

During the development activities of the Data Source and Gateways component and by the

time of writing of this deliverable, the most important issues identified are the following:

– The unavailability of local deployment that would facilitate the data acquisition for

information retrieval (from the project data providers).

– The unavailability, at integration time, of the Data Converter component prototype in

order to perform the integration activities towards the system integration as

documented in the integration plan. However, this does not pose a significant issue

since the integration with the exposed interface of the Data Converter (delivered as a

stub) has already been implemented and tested.

D6.4 Integration of Results v1 03/04/2018

21/50

3.4. Data converter

Implemented functionalities

– Dockerized maps for conversion from Raw format to HHR.

– Dynamic proxy/registry for Raw to HHR dockerized maps.

– Conversion from HHR to FHIR.

Integrated components

– HHR Manager.

– Aggregator.

Technical interfaces

Raw to HHR maps

Operation ID 3.4.1

URI pattern http://icemain.hopto.org:7025/rawtohhr/cra/behaviour

Methods POST: Converts received Raw document of CRA behaviour data into
HHR format.

Input Body: ID, user_ID, Variable, Value

Raw Document

Output HHR measure document out of the provided Raw document or body.

Operation ID 3.4.2

URI pattern http://icemain.hopto.org:7025/rawtohhr/cra/comorbidities

Methods POST: Converts received document with the comorbidities CRA schema
to the HHR format.

Input Body: ID, user_ID, Value

Raw Document

Output HHR comorbidities condition document.

http://icemain.hopto.org:7025/tohhr/cra/behaviour
http://icemain.hopto.org:7025/rawtohhr/cra/comorbidities

D6.4 Integration of Results v1 03/04/2018

22/50

Operation ID 3.4.3

URI pattern http://icemain.hopto.org:7025/rawtohhr/cra/diagnosis

Methods POST: Converts received document with the diagnosis CRA schema to
the HHR format.

Input Body: ID, user_ID, Value

Raw Document

Output HHR diagnosis condition document.

Operation ID 3.4.4

URI pattern http://icemain.hopto.org:7025/rawtohhr/cra/patient

Methods POST: Converts received document with the patient CRA schema to the
HHR format.

Input Body: ID, email, created_at

Raw Document

Output HHR patient document.

Operation ID 3.4.5

URI pattern http://icemain.hopto.org:7025/rawtohhr/cra/sideeffect

Methods POST: Converts received document with the sideeffect CRA schema to
the HHR format.

Input Body: ID, user_ID, Side_effect

Raw Document

Output HHR sideeffect condition document.

Operation ID 3.4.6

URI pattern http://icemain.hopto.org:7025/rawtohhr/cra/treatment

http://icemain.hopto.org:7025/tohhr/cra/diagnosis
http://icemain.hopto.org:7025/tohhr/cra/patient
http://icemain.hopto.org:7025/tohhr/cra/sideeffect
http://icemain.hopto.org:7025/tohhr/cra/treatment

D6.4 Integration of Results v1 03/04/2018

23/50

Methods POST: Converts received document with the CRA treatment schema to
the HHR format.

Input Body: ID, user_ID, Value

Raw Document

Output HHR treatment condition document.

Operation ID 3.4.7

URI pattern http://icemain.hopto.org:7025/rawtohhr/hulafe/labtests

Methods POST: Converts received document with the hulafe labtests schema to
the HHR format.

Input Body: PatientID, TestRequestDate, TestId, TestMagnitude, TestResult,
TestUnits, TestPathology, LastPatientTest

Raw Document

Output HHR labtests document.

Operation ID 3.4.8

URI pattern http://icemain.hopto.org:7025/rawtohhr/hulafe/morbidity

Methods POST: Converts received document with the hulafe morbidity schema to
the HHR format.

Input Body:
PatientID, ICD9, MainDiagnostic, DiagnosisDate, GroupAge,
DiagnosisOrigin, HaHEpisode, Episode

Raw Document

Output HHR morbidity document.

Operation ID 3.4.9

URI pattern http://icemain.hopto.org:7025/rawtohhr/hulafe/hospitalization

http://icemain.hopto.org:7025/tohhr/hulafe/labtests
http://icemain.hopto.org:7025/rawtohhr/hulafe/morbidity
http://icemain.hopto.org:7025/tohhr/hulafe/hospitalization

D6.4 Integration of Results v1 03/04/2018

24/50

Methods POST: Converts received document with the hulafe hospitalization
schema to the HHR format.

Input Body: PatientID, EpisodeCode, GroupAge, AdmissionServiceCode,
RealServiceCode, AdmissionDate, AdmissionReasonCode,
DischargeDate, DischargeReasonCode, DischargeDestinationCode,
Exitus, LengthOfStay, UrgentAdmission, Surgery, SurgeryDate,
PreSurgeryStay, ICD9Diagnostic, ICD9Procedure

Raw Document

Output HHR hospitalization encounter document.

Operation ID 3.4.10

URI pattern http://icemain.hopto.org:7025/rawtohhr/hulafe/patient

Methods POST: Converts received document with the hulafe patient schema to
the HHR format.

Input Body: PatientID,Gender,BirthYear,ExitusYear

Raw Document

Output HHR patient document.

Operation ID 3.4.11

URI pattern http://icemain.hopto.org:7025/rawtohhr/hulafe/hah

Methods POST: Converts received document with the hulafe Hospital at Home
schema to the HHR format.

Input Body: PatientID, EpisodeCode, InitDate, AdmissionDate, EndDate,
RequestDate, AssessmentDate, Admission, LengthOfStay,
SchemaCode, CircumstanceCode, FunctionCode, PatientTypeCode,
OriginCode, StatusCode, SectionCode, LineCode, ServiceOriginCode,
HaHDischarge

Raw Document

Output HHR HaH encounter document.

http://icemain.hopto.org:7025/tohhr/hulafe/patient
http://icemain.hopto.org:7025/tohhr/hulafe/hah

D6.4 Integration of Results v1 03/04/2018

25/50

Operation ID 3.4.12

URI pattern http://icemain.hopto.org:7025/rawtohhr/hulafe/emergency

Methods POST: Converts received document with the hulafe emergency schema
to the HHR format.

Input Body: PatientID, EpisodeCode, Severity, AdmissionShiftCode,
DischargeShiftCode, AdmissionServiceCode, TriageService,
DestinationService, DischargeServiceCode, CircumstancesCode,
ReasonsCode, RegistrationDate, FirstAttDate,
AdmissionObservationDate, DischargeDate, HospitalizationDate,
Registered, Classified, AdmittedHospital, Exitus, Excluded, Runaway,
Attended, WaitingTimeTriage, WaitingTimeAtt, TotalLengthOfStay, ICD9

Raw Document

Output HHR emergency encounter document.

Operation ID 3.4.13

URI pattern http://icemain.hopto.org:7025/rawtohhr/hulafe/outpatient

Methods POST: Converts received document with the hulafe outpatient schema
to the HHR format.

Input Body: PatientID, EpisodeCode, LocationCode, ServiceCode,
ConsultationDate, VisitDone, BeginTime, EndTime, AgeGroup,
TypeOfProvision

Raw Document

Output HHR outpatient encounter document.

Operation ID 3.4.14

URI pattern http://icemain.hopto.org:7025/servicediscovery

Methods GET: List of available maps.

Input None

Output XML describing all available maps with entry point, input format, and
example output.

http://icemain.hopto.org:7025/tohhr/hulafe/emergency
http://icemain.hopto.org:7025/tohhr/hulafe/outpatient
http://icemain.hopto.org:7025/servicediscovery

D6.4 Integration of Results v1 03/04/2018

26/50

Convert HHR to FHIR format

Operation ID 3.4.15

URI pattern http://{domain}:{port}/api/convert

ex: http://icemain.hopto.org:7030/api/convert

Methods POST: Converts received HHR document into FHIR format

Input Body: HHR document in XML format

Output 201 CREATED + FHIR document, if the provided HHR document can be
converted.

200 OK + Same document, if the provided document cannot be
converted.

Performed work

Prototype implementation has been developed regarding the conversion of HHR format to

FHIR. Additional efforts have been done to provide a dynamic mechanism capable of running

new Raw to HHR maps.

Identified issues and possible evolutions

The integration of the Data Converter component is realised by providing REST-based

interfaces to and from the component. Since many components of the CrowdHEALTH

platform were being developed in parallel and a complete end-to-end integration and testing

was not feasible, the REST-based approach has provided more flexibility during the

development phase of the Data Converter component. This has also allowed the data

converter component to be independently tested with use-case datasets. Future integration of

Data Converter will also benefit from this modular approach.

D6.4 Integration of Results v1 03/04/2018

27/50

3.5. Data cleaner

Implemented functionalities

The Data Cleaner component is addressing the volatility of the incoming information in the

course of providing the desired data accuracy, consistency and completeness across the

available information on the CrowdHEALTH platform. To achieve this, the following

functionalities have been implemented as reported in the deliverable D3.21:

– Perform validation on information data.

– Perform cleaning on information data.

– Perform data completion on information data.

– Perform data verification on information data.

– Perform logging of the identified errors and corrective actions.

Integrated components

The Data Cleaner do not use, and thus do not integrate, any other CrowdHEALTH

components.

Technical interfaces

The Data Cleaner component is providing the interface responsible for the data cleaning and

data completion processing, namely the IDataCleanerService. This interface handles all

incoming requests from the Data Sources and Gateways component in order to perform the

data cleaning processing which includes ensuring the validity of the data, performing the data

cleansing and data completion processing and finally the data verification.

The IDataCleanerService implements the following two endpoints:

Authentication/Login endpoint

This is endpoint is implementing the token-based authentication mechanism for the interface

and is implemented using JSON Web Token (JWT) [4].

Operation ID 3.5.1

URI pattern http://hostname[:port]/login

Methods GET: Performs the authentication of the user. In the response
headers the generated JWT is provided which is mandatory for
accessing the rest of the endpoints of the interface. The

http://hostname[:port]/login

D6.4 Integration of Results v1 03/04/2018

28/50

authentication mechanism is provided out of the box by Spring
security framework [5].

Input Expects a request body in the following format:
{
 “username”: “user”,
 “password”: “pass”
}

Output None.

Data Cleaning endpoint

This endpoint is implementing all functionalities as listed in section Implemented

functionalities.

Operation ID 3.5.2

URI pattern http://hostname[:port]/cleaner/clean/{providerId}/{datasetId}

Methods POST: Responsible for handling incoming HTTP requests to perform
the data cleaning processing on a dataset and provided the results back
to the requestor.

Input Authorization: A valid JWT as received by Authentication/Login
endpoint.

RequestBody: The HHR compliant dataset for which the data cleaning
will be executed in XML format

providerId: The unique identifier of the provider. The acceptable values
are:

 BIO.

 CRA.

 DFKI.

 HULAFE.

datasetId: The unique identifier of the dataset for the specified provider.
The combination of parameters providerId and datasetId is predefined
(according to the identified use cases). For each providerId the list of
acceptable values for the datasetId are displayed below:

 BIO

◦ Allergies.

◦ Biosignals.

◦ Medication.

 DFKI

◦ Activity.

◦ Allergen.

◦ Allergy.

 HULAFE

◦ Emergency.

◦ Hah.

◦ Hospitalization.

http://hostname[:port]/cleaner/clean/%7BproviderId%7D/%7BdatasetId%7D

D6.4 Integration of Results v1 03/04/2018

29/50

◦ Phr.

 CRA

◦ Patient.

◦ Diagnosis.

◦ Treatment.

◦ Comorbidity.

◦ Behaviour.

◦ Coaching.

◦ Sideeffect.

◦ Annotation.

◦ Biodata.

◦ Datasource.

◦ Diet.

◦ Diettype.

◦ Dish.

◦ Ingredient.

◦ Patient.

◦ Recipe.

◦ Recipestep.

◦ Labtest.

◦ Morbidity.

◦ Outpatient.

◦ Patient.

Output HHR compliant dataset in XML format.

Performed work

The development activities for all planned functionalities of the Data Cleaner component that

are included in the integration plan are still in progress, as most of these activities depend

upon the availability of the actual data from the data providers, and the availability of historical

information, both in one common schema, more specifically the HHR format. The delivered

prototype of Data Cleaner includes several aspects of the functionalities, however there are

several ongoing activities by the time of writing of this deliverable towards the completion of

these functionalities. For the integration activities towards the system integration, the Data

Cleaner component has been successfully integrated with Data Sources and Gateways

component by providing the necessary interface.

More specifically, the table below provides the status of the performed work:

Task Status

Perform validation
on information
data

Ongoing activity. The prototype currently supports the following methods:

 Conformance to specific data types (integer, string, etc.).

 Identify missing values.

Constraints and rules definition is an ongoing activity in collaboration with
the demonstrator partners.

Perform cleaning
on information
data

Ongoing activity.

The prototype currently supports the preparation of the cleansing
methods.

 Constraints and rules definition is an ongoing activity in collaboration
with the demonstrator partners.

D6.4 Integration of Results v1 03/04/2018

30/50

Perform data
completion on
information data

Ongoing activity. The prototype currently supports the following methods:

 Drop value.

 Fill with specific value.

 Fill with previous observation.

 Fill with next observation.

 Fill with mean value.

 Fill with median value

 Fill with most frequent value

Perform data
verification on
information data

Completed successfully.

Note: data verification is performing the necessary checks that the
modifications/transformations introduced on the dataset by all previous
steps (data validation, data cleaning and data completion) were correctly
applied towards the expected data quality on the datasets. It is performed
based on the existing methods defined in the previous rows. As the
components evolves and more methods are added the data verification
will be updated accordingly.

Perform logging of
the identified
errors and
corrective actions

Completed successfully.

Integration with
Data Sources and
Gateways
component

Completed successfully.

Identified issues and possible evolutions

During the development activities of the Data Cleaner components and by the time of writing

of this deliverable, the most important issues identified are the following:

– There is an ongoing effort to define the constraints and rules in collaboration with

demonstrator partners. These rules and constraints will specify the requirements for

the development activities of the Data Cleaner component towards the completion of

the functionalities of the component.

– The Data cleaner component requires historical data for the data cleaning processing.

However, at the current time that this deliverable is being written, the focus is in the

end-to-end integration of the various components of the platform. Due to this, the

historical data required for the processing could not be available at that time.

D6.4 Integration of Results v1 03/04/2018

31/50

3.6. Data store and big data analytics

Implemented functionalities

The Big Data Platform provides all functionalities that can be found in a traditional relational

database management system through a standard JDBC interface. Moreover, it provides Big

Data Analytics as an integral part of the platform, which internally uses both inter- and intra-

query parallelism to be able to provide performance-wised analytics for Big Data in real-time,

exploiting the ability of the platform to scale linearly to 100s of nodes without compromising

neither the coherence of the data and the ACID properties, neither its overall performance

under intensive operational workloads. The platform provides these analytics over the live

data, letting the application developer to exploit the Big Data Analytics using standard SQL

statements and let the platform itself to take care of returning the results. The Big Data

Analytics exploit the parallel OLAP engine capabilities which can be enabled by setting the

parallel parameter to a value greater than 0, indicating the level of parallelism needed.

Additional parameters can be set to the distributed parallel query processing engine to

configure its behaviour:

– leanxcale.pq.impl: Parallel query processing implementation to use. The default is

org.apache.derby.impl.services.pq.SocketsParallelQueryService

– leanxcale.pq.sockets.device: Network device used for inter-workers communication.

The default is loopback

– leanxcale.pq.sockets.address: Network address to bind for inter-workers

communication.

– leanxcale.pq.sockets.ports: Port range used for the local worker. It should be specified

as from-to, e.g., 20000-21000 to use ports 20000 to 20999

– leanxcale.pq.sockets.buffer: Size of each buffer used for inter-worker communication.

Amount of memory used will this setting x (2 x nRemoteWorker) x nLocalWorkers at

each host.The default is "64K". Suffixes M and K can be used for MByte and Kbyte

– leanxcale.pq.scheduler: Scheduling policy: affinity, prefer regions from a co-located

region server; rr round-robin distribution of regions. The default is rr.

– leanxcale.pq.shards: Desired number of shards for each worker. A larger number

improves load-balancing, but increases scan overhead. The default is 10

Apart from the standard functionalities that are expected from a RDBMS, the big data platform

additionally provides functionalities for direct access to its internal key-value storage and to

process and correlate streaming events with data at rest in real time by means of the Complex

Event Processing (CEP) engine.

The functionalities to access the key-value storage can be summarized as follows:

– Initialize a connection with the key-value data store.

– Begin a transaction.

– Commit/Abort a transaction.

D6.4 Integration of Results v1 03/04/2018

32/50

– Get an array of bytes representing a tuple given the value of its primary key or one of

its secondary indexes.

– Scan a data table using a predicate and return a list of arrays of bytes, representing

tuples that satisfy the input predicate.

– Insert an array of bytes which represents a tuple in a given data table.

– Remove tuples from a data table, based on a predicate input.

– Update the values of tuples that satisfy a predicate input.

The CEP can be accessed using a streaming API that provides functionalities to:

– Register and deploy continuous queries.

– Register to input streams of a continuous query.

– Subscribe to output streams of a continuous query.

– Create and send events to continuous queries.

Continuous queries are acyclic graph of streaming operators. Several streaming operators

have already been developed:

– Stateless operators: Map, Filter, Union, Multiplexer.

– Stateful operators: Aggregate, Join, SelfJoin.

– Datastore operators.

Finally, the data store provides some business level functionalities that encapsulate the whole

process of deserializing, transforming to the internal model and storing the FHIR/HHR objects

to the data store. These can be summarized as follows:

– Insert FHIR/HHR objects related with patients.

– Insert FHIR/HHR objects related with comorbidities.

– Insert FHIR/HHR objects related with side effects.

Integrated components

The CrowdHEALTH data store integrates the Complex Event Processing engine developed by

UPM and does not use any other external libraries, components or functionalities developed

by other partners. It makes use of the HAPI FHIR open source specification implemented in

Java [6] to internally deserialize the received input to the common data model that the

components of the platform are aware of, but this is an external dependency rather than a

direct one with a partner of the project.

D6.4 Integration of Results v1 03/04/2018

33/50

Technical interfaces

For the LeanXcale Direct API for the internal key-value data store, the interfaces are the

following:

Operation ID 3.6.1

Signature public static synchronized void Conn.dial(String[] metaaddrs, LTM
ltm) throws kv.Error

Connects to the store given the addresses of the metadata server
(host!port). This operation must be performed once, before any
other call. And it must be performed just once. If LTM is not null, it
is used as the LTM for the client library

Input @Param: String[] metaaddrs: a list of addresses of the metadata
servers.

@Param: LTM ltm: an implementation of the LTM interface for
managing transactions, or null if the internal implementation should
be used.

Operation ID 3.6.2

Signature public static byte [] Conn.get(long tid, String tname, byte [] key,
short [] filds) throws kv.Error

Get a tuple for a given key on the the given table, in the scope of
the given transaction and returns its representation in an array of
bytes, retrieving only the specified given fields.

Input @Param: long tid: the id of the current transaction, whose visibility
will decide which version of the tuple will be returned.

@Param: String tname: the name of the table where the user wants
to retrieve the tuple from.

@Param: [] byte key: The primary key to get the tuple, represented
by an array of bytes.

@Param: [] short flids: a list of indexes, each one representing the
index of the column of the tuple, that the user wants to retrieve data.
If null, all fields will be returned.

Output Byte []: the retrieved tuple in an array of bytes.

D6.4 Integration of Results v1 03/04/2018

34/50

Operation ID 3.6.3

Signature public static int Conn.scan(long tid, String tname, byte [] minkey,
byte [] maxkey, byte [] prg, short [] filds, long nvals, int flags) throws
kv.Error

Scans the given table, in the scope of the given transaction and
returns the (unsafe) integer pointing to the memory address where
the result set is located. The result set contains all tuples between
the rage of [minkey, maxkey) or the tuples that satisfy the given
predicate. It returns only the given fields of the tuples, and the
nvals records.

Input @Param: long tid: the id of the current transaction, whose visibility
will decide which versions of the tuples will be returned.

@Param: String tname: the name of the table where the user wants
to retrieve the tuples from.

@Param: [] byte minKey: The minimum primary key to start scanning
for tuples, represented by an array of bytes. If null it will start
scanning from the beginning of the table.

@Param: [] byte maxKey: The maximum primary key to stop
scanning for tuples, represented by an array of bytes. If null, It won’t
stop scanning until it reaches the end of the table.

@Param: [] byte prg: The predicate to evaluate tuples while
scanning the given table. If nuil, tuples will be returned only
according to the given primary key range.

@Param: [] short: a list of indexes, each one representing the index
of the column of the tuple, that the user wants to retrieve data. If null,
all fields will be returned.

@Param: long nvals: maximum number of tuples to be returned. If
null, all tuples that satisfy the query criteria will be returned.

@Param: int flags: various flags that alter the default behaviour of
the data store while scanning. If null, the default behaviour will be
expected.

Output Int: the (unsafe) memory address where the result set is located.
This address must be used only within the provided methods of this
class. Direct memory access using Java Unsafe operators using this
address are unpredictable.

D6.4 Integration of Results v1 03/04/2018

35/50

Operation ID 3.6.4

Signature public static void Conn.ups(long tid, String tname, byte [] value)

inserts a tuple in the given table

Input @Param: long tid: the id of the current transaction, which will be
used for checking potential write-write conflicts and will make the
given added tuple visible only to this transaction.

@Param: String tname: the name of the table where the user wants
to insert the tuples to.

@Param: [] byte value: the tuple to be inserted, represented by an
array of bytes.

Operation ID 3.6.5

Signature public static void Conn.upd(long tid, String tname, byte [] value)
throws kv.Error

Updates a tuple in the given table

Input @Param: long tid: the id of the current transaction, which will be
used for checking potential write-write conflicts and will make the
given modified tuple visible only to this transaction.

@Param: String tname: the name of the table where the user wants
to update the tuples from.

@Param: [] byte value: the tuple to be updated, represented by an
array of bytes.

Operation ID 3.6.6

Signature public static void Conn.del(long tid, String tname, byte [] value)
throws kv.Error

Deletes a tuple in the given table

Input @Param: long tid: the id of the current transaction, which will be
used for checking potential write-write conflicts and will make the
absence of the given deleted tuple visible only to this transaction.
@Param: String tname: the name of the table where the user wants
to update the tuples from.
@Param: [] byte value: the tuple to be deleted represented by an

D6.4 Integration of Results v1 03/04/2018

36/50

array of bytes. The tuple can contain only the primary key of the
tuple to be deleted. All other fields will be ignored.

Operation ID 3.6.7

Signature public static long Conn.begin()

Starts a transaction

Output long: the unique identifier (tid) of the transaction that is started.

Operation ID 3.6.8

Signature public static long Conn.commit(long tid)

Commits a transaction

Input long: the unique identifier (tid) of the transaction that the user wants
to commit.

Output The tid of the transaction.

Operation ID 3.6.9

Signature public static long Conn.abort(long tid)

Aborts (rollback) a transaction

Input long: the unique identifier (tid) of the transaction that the user wants
to rollback.

Output The tid of the transaction

Operation ID 3.6.10

Signature public Tuple(byte array)

Public constructor that creates a Tuple, representing a record of
the data store, given the representation of the latter in an array of
bytes

D6.4 Integration of Results v1 03/04/2018

37/50

Operation ID 3.6.11

Signature public byte [] toBytes()

Transforms a Tuple object to an array of bytes

Output The representation of the tuple in an array of bytes.

For the streaming API, the interfaces are the following

Operation ID 3.6.12

Signature public ResponseStatusJSON registerQuery(QueryDefinition
queryDefinition)

registers a new query in the CEP

Input QueryDefinition: object representing the query using the JSON
notation.

Output A ResponseStatusJSON object. This object contains three fields: a
String field with the query name, an integer with the response status
code, and another String with the response text description.

Operation ID 3.6.13

Signature public ResponseStatusJSON deployQuery(String
queryDeployment)

deploy a registered query in the CEP

Input queryDeployment: String with the name of the query to deploy. This
parameter will be different in the CEP distributed prototype.

Output ResponseStatusJSON object. This object contains three fields: a
String field with the query name, an integer with the response status
code, and another String with the response text description.

Operation ID 3.6.14

Signature public TupleSender registerToStream(RegisterToStream
registerToStream)

D6.4 Integration of Results v1 03/04/2018

38/50

register with an input stream of a certain query.

Input registerToStream: object with the query name and the stream name
to which the client will connect.

Output TupleSender object. It represents the stub that the client application
uses to send tuples.

Operation ID 3.6.15

Signature public SubscribeToStreamResponse
subscribeToStream(SubscribeToStream subscribeToStream)

subscribe with an output stream of a query in order to receive the
result of the continuous computation..

Input subscribeToStream: object with the query name and the stream
name to which the client will subscribe.

Output SubscribeToStreamResponseJSON object. This object contains
information about the stream deployment.

More information regarding the API can be found at the D4.1 deliverable [7].

For the data imported component that inserts data elements represented in the FHIR/HHR

format, the interfaces are the following:

Operation ID 3.6.16

Signature public int upsertPatients(String patientXml) throws
DataImporterException

Insert a list of patients, in an HAPI-FHIR format, in the data store. If
the patient already exists, then will update its values according to
this input.

Input @Param: String patientXml: The serialized xml which contains the
list of patients, in the HAPI-FHIR format, to be inserted/updated in
the data store.

Output int: the number of rows affected (inserted or updated).

D6.4 Integration of Results v1 03/04/2018

39/50

Operation ID 3.6.17

Signature public int upsertSideEffects(String sideEffectsXml) throws
DataImporterException

Insert a list of side effects, in an HAPI-FHIR format, in the data
store. If the side effect already exists, then will update its values
according to this input.

Input @Param: String sideEffectsXml: The serialized xml which contains
the list of side effects, in the HAPI-FHIR format, to be
inserted/updated in the data store.

Output int: the number of rows affected (inserted or updated).

Operation ID 3.6.18

Signature public int upsertComorbidities(String comorbiditiesXml) throws
DataImporterException

Insert a list of comorbidities, in an HAPI-FHIR format, in the data
store. If the comorbidity already exists, then will update its values
according to this input.

Input @Param: String comorbiditiesXml: The serialized xml which contains
the list of comorbidities, in the HAPI-FHIR format, to be
inserted/updated in the data store.

Output int: the number of rows affected (inserted or updated) .

Operation ID 3.6.19

Signature public int upsertDisgs(String disgsXml) throws
DataImporterException

Insert a list of disg objects, in an HAPI-FHIR format, in the data
store. If the object already exists, then will update its values
according to this input.

Input @Param: String disgsXml: The serialized xml which contains the list
of objects, in the HAPI-FHIR format, to be inserted/updated in the
data store.

Output int: the number of rows affected (inserted or updated).

D6.4 Integration of Results v1 03/04/2018

40/50

More information regarding this API can be found at the corresponding D4.10 deliverable [8].

Performed work

The data store API (LeanXcale JDBC, Direct Access API and Streaming API) are delivered on

schedule, according to the integration plan as described in D6.1 [1]. No changes are foreseen

for the forthcoming periods regarding the interface. Additional improvements and extensions

will only affect the SQL dialect currently supported by the data store and the streaming API to

support the deployment of parallel queries, in order to include the advanced functionalities

required for the data lake support and for the online aggregations. The required development

that is needed to support these features, as internally planned by the task T4.1 for the

forthcoming reporting periods and described in D4.1, corresponds to the internal engine of the

Big Data Platform, and will not affect the exposed interface to the other components.

Regarding the Data Importer, the delivered work currently covers basic scenarios using small

amount of data, and it is planned to be extended according to the use cases’ needs. Although

the existing interface is not foreseen to be altered, additional functionalities will be provided in

order to support the data importing of additional types of objects.

Identified issues and possible evolutions

The delivered Big Data Platform currently addresses all functional requirements described in

D2.1 [2] and the delivered functionality is in compliance with the integration plan described in

D6.1. However, in the context of CrowdHEALTH, the platform has not been evaluated yet in

the project’s identified real life scenarios, involving numerous end-users and various

stakeholders, providing and requesting simultaneously big amount of data, and this might

raise some issues regarding the satisfaction of some non-functional requirements. In an

attempt to be pro-active and confront with these scenarios, the platform is already tested in

order to evaluate its functionality and performance level under highly intensive workloads,

using both and mixed OLTP and OLAP workloads, so the risk of not satisfying the non-

functional requirements is considered extremely low. In any case, potential evolutions of the

component with respect to its performance under highly intensive workloads will affect the

internal engine of the platform and will not alter the provided interface.

3.7. Aggregator

Implemented functionalities

– Collection of FHIR data and forwarding it to the Big Data Platform.

– Aggregation of FHIR data in the Big Data Platform.

D6.4 Integration of Results v1 03/04/2018

41/50

Integrated components

The Aggregator is composed of two components:

– Aggregator service that received FHIR data from the Data Converter component and

forwards it to Big Data Platform.

– CrowdHEALTH data store that stores data into the Big Data Platform.

Technical interfaces

Aggregate Data in FHIR format

Operation ID 3.7.1

URI pattern http://{domain}:{port}/api/aggregate

ex: http://icemain.hopto.org:7031/api/aggregate

Methods POST: Receives a FHIR document and aggregates its contents
with Data store

Input Body: FHIR document in XML format

Output None

Performed work

First draft of the service with prototype functionality has been provided.

Identified issues and possible evolutions

Although the Big Data store has been deployed and tested successfully, at the integration

time there are some authentication issues that restrict external access from the Aggregator

service that feeds data to the Big Data Store. However, the queries to aggregate data in the

Big Data Platform have been designed and upon the resolution of authentication issues, the

connectivity between Big Data Store and Aggregator services can be easily established.

D6.4 Integration of Results v1 03/04/2018

42/50

3.8. Multimodal Forecasting and Causal analysis module

Implemented functionalities

One of the main forecasting functionalities in the current version is the forecast of weight and

the overall fitness status at the age of 18. In version one of causal analysis and forecasting

module we based our development on the available datasets from SLOFIT project provided

from University of Ljubljana use case and we developed three forecasting functionalities.

– Weighting forecast.

– Individual health parameter.

– Overall fitness the age of 18.

Integrated components

The main integrated components of the prototype v.1 are as follows:

– Data cleaning app: Responsible for tidying the data (fixing typos in names, merging

cases where names and surnames are mixed, fixing date of birth). This prototype is

used in pre-processing.

– Missing value fixer: Populates the missing values with extrapolated values in order for

the models to work (as the models often rely on continuous data and cannot handle

missing data well). This prototype is used in pre-processing.

Technical interfaces

Operation ID 3.8.1: Asses intervention

Signature public float[] assesIntervention(float[] forcastedValues, Model
interventionModel, String[] aggregationVariables)

Input forcastedValues: Values that we try to change with intervention.

interventionModel: what pre-built intervention model to use – has to be
compatible with the forecast values.

aggregationVariables: By what variables to group results – class, school,
municipality

Output Table of forecast values changed by the intervention

D6.4 Integration of Results v1 03/04/2018

43/50

Operation ID 3.8.2: Prepare/modify data set

Signature public DataSet createDataSet(Dataset ds, String[]
independentVariables, String[] dependantVariables, StringtimeVariable,
Time startTime, Time endTime, Time forecastStartTime, Time
forecastEndTime, Rules transformationRules)

Modify the existing data set, based on the selected input parameters.

Input Ds: Original data set

independentVariables: Independent variables used for training the
model.

dependentVariables: Dependent variables used for training the model.

timeVariable: The name of the variable that represents the time value
used for predictions.

startTime: Defines which point in time is the starting point for the new
data set.

endTime: Defines which point in time is the ending point for the new
data set.

transformationRules: Set of rules for transforming the independent
variables. Rules can include feature generation and feature selection.

Output Output: New modified data set.

Operation ID 3.8.3: Build forecasting model

Signature public Model buildForecastngModel(Dataset ds, String[]
independentVariables, String[] dependantVariables, Algorithm
forecastingAlgorithm)

Builds a forecasting model based on the data.

Input Ds: Dataset used for building a model

independentVariables: Independent variables used for training the
model.

dependentVariables: Dependent variables used for training the model.

forecastingAlgorithm: Type of machine learning algorithm used for

D6.4 Integration of Results v1 03/04/2018

44/50

building a forecasting model (e.g. SVM)

Output Output: Forecasting model, that can be used for forecasts.

Operation ID 3.8.4: Make forecasts

Signature public Dataset buildForecastngModel(Dataset ds, Model
forecastingModel, String[] aggregationVariables, Time predictTo)

Builds a forecasting model based on the data.

Input Ds: Dataset of independent values to forecast.

forecastingModel: Model used for making forecasts.

aggregationVariables: By what variables to group results – class, school,
municipality

predictTo: Define to which point in time to predict.

Output Output: Dataset of forecasts.

Performed work

The performed work in version 1 was based on the collaboration with the SLOFIT project from

University of Ljubljana. Within version 1 we described the module architecture and the

functionalities based on the provided datasets and the inputs from policy makers and

researchers from the University of Ljubljana partner.

Identified issues and possible evolutions

Version one of multimodal forecasting and causal analysis module is limited only to SLOFIT

use case because of the bounded data availability from use case partners during the first year

of the project. In the following (in the second version), data from other use cases will be added

to the module, as well as additional use case-specific functionalities.

Moreover, the interpretation with all the use case partners and the policy makers lead to the

conclusion that the forecasting and causality module should be merged in one with different

functionalities, instead of two different components as initially planned. This process will be

described in the v2 prototype.

D6.4 Integration of Results v1 03/04/2018

45/50

3.9. Risk Stratification tool

In D6.1, we planned to integrate prototypes of risk stratification tools in the first version of the

CrowdHEALTH platform. However, these tools need to be developed by working directly with

data from use case partners, involving a period of data analysis and then empirical

procedures for training and evaluating machine learning classifiers to perform the risk

stratification task. It has not been possible to access data from use case partners in time to do

this work for this milestone. The first demonstration deliverable for the risk stratification tools

(D5.5) has been postponed until M22.

3.10. Visualization component

Implemented functionalities

The first prototype of the visual workbench is foreseen to be released at M20 of the project.

During the first year several functionalities have already been developed:

– Web application mock-up.

o Graphical creation of SQL queries.

o Graphical representation of SQL query results.

– Service Layer to connect with the data store.

o Get list of tables.

o Get schema of a table.

– Restful backend:

o Create a table to store component-specific data.

o Drop a table.

o Truncate a table.

o Get all available tables, so that the end-user of the visualization dashboard to

be able to design analytical queries.

o Get table info (i.e columns, foreign keys etc).

o Get all available data types.

o Insert a row to a table.

o Delete a row from a table based on its primary key.

o Update a row from a table, based on its primary key.

o Get all rows from a table.

o Get a row from a table based on its primary key.

o Perform a get operation on a table, using a predicate on a field.

D6.4 Integration of Results v1 03/04/2018

46/50

Integrated components

The Visualization component is integrated with the Big Data Platform, and it uses its exposed

functionalities to perform both simply information retrieval using its Elastic JDBC driver, and

Big Data Analytics operations.

User interfaces

Query Composer

The query composer can be used to create SQL query as well as Cep streaming queries.

Users can create SQL queries by adding and connecting operators into a graph. As an

example the next figure where the user load the table named “Table2” as data source and

then first apply a filter condition and finally she group the results.

Figure 2 Query composition

The user can then visualize the result of the current query by attaching chart operators to the

graph. For example, in the next picture the user decides to show the results of the query using

a bar chart. In this particular case the user is visualizing the number of Patients from 4

different hospitals in the last 3 years.

D6.4 Integration of Results v1 03/04/2018

47/50

Figure 3 Query results visualization

Dashboard

Using the dashboard users can see the results of stored queries by using different types of

chart. In the following picture there is an example of a dashboard made by four different chart:

line, tree-map, gauge and pie grid.

D6.4 Integration of Results v1 03/04/2018

48/50

Figure 4 Dashboard

Performed work

The functionalities of the Visualization component are currently under development, as

according to the DoA, its first prototype is planned to be delivered on M20. As a result, this

component was not included into the integration plan of D6.1. However, some functionalities

of the web application as well as the integration with the Big Data Platform has already been

developed, and the performed work is considered aligned with the internal planning of T4.4.

Identified issues and possible evolutions

A critical aspect for the development of the Visualization component is its integration with the

Big Data Platform, which is a crucial component for retrieving data in order to visualize the

results of the data analytics to the dashboard. However, this work has already started and

after preliminary integration tests no important issues are foreseen for the forthcoming period.

D6.4 Integration of Results v1 03/04/2018

49/50

4. Conclusions

This report documents the achievements of the CrowdHEALTH system integration effort for

the first integration cycle. An overview of the current version of the CrowdHEALTH system is

reported in the section “First cycle architecture”, which shows the software components

integrated during the first year of the project. The implemented and integrated functionalities

have been described in detail for each component.

All software components planned in the integration plan [1] have been integrated, with respect

to the realized functionalities, with the exception of the Risk Stratification Tool that has been

postponed to the second integration cycle. Moreover, some planned functionality is still under

development. In particular, it is not clear yet if cleaning of HHR data is needed or just cleaning

of raw data as currently implemented is sufficient.

On the other hand, issues identified during the development have required the anticipation of

functionalities originally planned for the second cycle of development. That is the case of the

Visualization component to visualize the results of the data analytics to the dashboard, the

XML serialization of the HHR objects, and the user authentication and authorization module,

which are already started.

After preliminary integration tests of these components, some issue has been identified and

already solved. Moreover, some improvement to be implemented in the second cycle of

development have been identified. These include the possible addition of a network service

over the data anonymization, improvements to SQL dialect supported by the data store,

improvement of authentication functionalities.

D6.4 Integration of Results v1 03/04/2018

50/50

5. References

[1] De Nigro A. et al., D6.1 Integration plan v1, Feb. 25, 2018, EC H2020 CrowdHEALTH

project.

[2] Kyriazis D. et al., D2.1 State of the Art and Requirements Analysis v1, 2017, EC H2020

CrowdHEALTH Project.

[3] Kyriazis D. et al., D2.4 - Conceptual Model and Reference Architecture v1, 2017, EC

H2020 CrowdHEALTH project.

[4] Auth0. JSON Web Token. [Online]. https://jwt.io

[5] Pivotal Software. Spring. [Online]. https://projects.spring.io/spring-security/

[6] University Health Network. HAPI FHIR. [Online]. http://hapifhir.io/

[7] Ricardo Jimenez-Peris et al., D4.1 Scalable Big Data Management: Design and

Specification v1, 2017, EC H2020 CrowdHEALTH project.

[8] Wajid U. Kranas P., D4.10 Generating and Analysing Knowledge Framework: Software

Prototype I, Jan. 10, 2018, EC H2020 CrowdHEALTH project.

https://jwt.io/
https://projects.spring.io/spring-security/
http://hapifhir.io/

