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1 Executive Summary 

This document is the first in a series of deliverables on data-driven analytical tools for supporting 

policy makers develop healthcare policies. The focus here is on population-level risk stratification, 

employing machine learning tools for stratifying segments of the population into different levels of 

risk (low, medium, high).  

One of the primary aims of this work is to help inform policy makers of what the population-level 

health risks are, which may influence priorities in existing policies or identify needs for new policies. 

Further, to determine which segments of the population are of greater risk, so as to help targeting 

policies and optimising management of care. Given the data-driven approach, the risk stratification 

process also has the opportunity to identify new risk factors, which could be adopted in policies as 

well as contributing to the research community. 

In this deliverable, we propose a risk stratification process that goes beyond the state-of-the-art, 

addressing key challenges with medical data and risk stratification, such as the temporal (changing) 

nature of risk and dealing with data that is not missing at random. For these and other challenges, 

we review, discuss and propose solutions, covering both data processing techniques and machine 

learning classifiers. 

This risk stratification process will be applied by technical partners in the CrowdHEALTH project to 

address specific risk scenarios grounded in the project use cases. We include a high level analysis 

of such opportunities in this deliverable, but note that this is preliminary work as data was not 

available at the time of writing. 
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2 Introduction 

The CrowdHEALTH platform will include analytical tools for supporting policy makers develop 

healthcare policies. This deliverable concerns one type of analytical tool designed to perform 

population-level risk stratification. 

Risk stratification refers to grouping individuals into categories of risk. If we take the entire 

population, we refer to proportions of people belonging to risk categories such as low, medium and 

high risk. Further, we can apply the same categories to different segments of the population, 

according to policy-relevant population segments such as gender, age or socio-economic factors.  

We have reported a state-of-the-art review of risk stratification in CrowdHEALTH deliverable D2.1 

[1], which discusses both domain (expert) models and data-driven models. The focus here is on 

data-driven models using machine learning techniques (classifiers). Primarily supervised machine 

learning techniques, but, as will be discussed further in this deliverable, we also need to consider 

the use of semi-supervised machine learning techniques. 

It is worth repeating here that there have been many studies on morbidities such as cardiovascular 

diseases [2–7], coronary artery disease [8], diabetes [9–11], hypertension [12], metabolic syndrome 

[13], heritable cardiac arrhythmias [14], and clostridium difficile [15–17] in the context of using 

machine learning techniques. These cover many different techniques such as logistic regression, 

random forests, neural networks, naïve Bayes, support vector machines, 𝑘-nearest neighbour and 

some also use methods known as boosting, which take several classifiers as input and produce a 

single, stronger classifier. However, there are two key limitations of this previous body of research: 

1) they only consider two classes of risk; and 2) they do not model the temporal aspects of risk. The 

latter, therefore, fails to capture that population segments will be at different degrees of risk at any 

point in time. The other aspect of this pertains to how different diseases have different 

characteristics that are dependent on time, e.g., when certain symptoms may present. 

In this deliverable, we propose a process for developing risk stratification tools using machine 

learning techniques to support multi-class risk stratification considering the temporal nature of risk. 

As part of this we review, discuss and propose solutions for data processing and choice of machine 

learning classifiers. We also include a preliminary analysis of the use cases in the CrowdHEALTH 

project, discussing opportunities for population level risk stratification. This will be further developed 

within the project, and may change as this activity has been performed before data has been 

available. 

The remainder of this deliverable is structured as follows. In Section 3, we establish the foundation 

for this work, discussing how risk stratification can support policy making. The risk stratification 

process is presented and discussed in Section 4. This process makes reference to techniques 

pertaining to data processing, training classifiers and the classification techniques themselves, 

which are further discussed in Section 5. We include a high level discussion of a selection of risk 

stratification opportunities in the project in Section 6 before we conclude and discuss further work of 

this deliverable in Section 7. 
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3 Risk Stratification for Supporting Policy Making 

For the purposes of this report, we consider policy making at both the European and national levels, 

and the way in which risk stratification can provide support. While the European strategies are at a 

higher level than those typically created at national level, we aim here to focus on the common 

aspects pertaining to population level health policy making. 

3.1 Overview 

To guide the following discussions on how risk stratification can help support policy makers, Figure 

1, below, depicts a high level view of the key elements relevant in this context: policies, objectives, 

health strategy, risk factors, risk and risk stratification tools. 

First, policies have one or more objectives, which should align with / come from relevant health 

strategies (European and/or national levels). Policies also have one or more risk factors, which may 

be directly or indirectly reflected in the policies (could be used as performance indicators, for 

example). There may be one or more risks that impact on the objectives, which has one or more risk 

factors. Finally, Figure 1 shows how risk stratification tools evaluate the aforementioned risks 

(based on risk factors). 

 

 

Figure 1: High level view of key elements involved in risk stratification for supporting policy making. 

 

The following sections go into further detail of the elements identified in Figure 1. 

3.2 Policy Maker Needs and Challenges 

Of particular relevance to the work on risk stratification, the need for information and research to 

inform policies is very clear [18]. There are two aspects to this. First, getting information about 

issues, identifying areas where policies are needed. Second, information to help inform the details 

of the policies, e.g., to understand the issues better and determine how to best address them. 

Research also affects the uptake and adherence to policies. That is, it is likely to be poor if people 

are not convinced about the research leading to. As an example, Denham [18] noted one of the key 
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reasons the UK strategy for obesity announced in August 2016 was not well received was due to 

people not being convinced by the argument that exercise was the issue rather than calorie intake.  

Further, Denham [18] gives examples of where policies implemented in one region is rejected by 

another, emphasising the need for understanding the local situations. However, note that policy 

implementation is beyond the scope of the work discussed here. 

3.3 Policy Strategies and Objectives 

Note that CrowdHEALTH does not support the development of strategies, but the policies that are 

developed in line with strategies, whether at European or national level. However, we illustrate here 

that policies have objectives (one or more), which would relate to strategies. For example, the 

European Commission (EC) has outlined three aspects of their strategy [19]: 

1. Spending smarter in sustainable health systems. 

2. Investing in people’s health, particularly through promotion programmes. 

3. Investing in health coverage as a way of reducing inequalities and tackling social exclusion. 

Further, the EC focuses on the following challenges for 2016-2020 [19]: 

¶ achieving greater cost-effectiveness; 

¶ competitiveness together with safety; 

¶ tackling emerging global threats; 

¶ evidence-based policy making; 

¶ addressing the risk factors of chronic disease. 

In addition to this, the World Health Organization (WHO) launched a European health policy 

framework referred to as Health 2020 [20] aimed at supporting policy makers. It was adopted by 53 

Member States in September 2012, focusing on four “priority areas”: 

¶ invest in health through a life-course approach and empower citizens, 

¶ tackle Europe’s major disease burdens of non-communicable and communicable diseases; 

¶ strengthen people-centred health systems and public health capacity, including 

preparedness and response capacity for dealing with emergencies; and 

¶ create supportive environments and resilient communities. 

All of the above points can be translated into objectives that the policies should impact on, such as 

addressing the risk factors of chronic disease (from the EC 2016-2020 challenges). To give an 

example of strategies at the national level the United Kingdom has defined an NHS Outcomes 

Framework for the National Health Service (NHS), which sets out both a framework and indicators 

that are used to measure health outcomes against. It informs policies as well as being a reference 

point for evaluating the success of policies after they have been implemented.  

The NHS targets five domains: 

1. Preventing people from dying prematurely. 

2. Enhancing the quality of life for people with long-term illnesses. 

3. Helping people to recover from episodes of ill health or following injury. 
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4. Ensuring that people have a positive experience of care. 

5. Treating and caring for people in a safe environment and protecting them from avoidable 

harm. 

For each domain, the following are detailed: 

¶ Overarching indicators. 

¶ Improvement areas. 

To take one example, the following lists the indicators and improvement areas for the first domain 

(preventing people from dying prematurely).  

The overarching indicators are: 

¶ Potential years of life lost from causes considered amenable to healthcare. 

¶ Life expectancy at 75. 

¶ Neonatal mortality and stillbirths. 

Improvement areas include: 

¶ Reducing premature mortality from the major causes of death 

o Cardiovascular disease. 

o Respiratory disease. 

o Liver disease. 

o Cancer (further broken down into 6 categories). 

¶ Reducing premature mortality in people with mental illness. 

¶ Reducing mortality in children. 

¶ Reducing premature death in people with a learning disability. 

The information above from the Outcomes Framework for the NHS gives more concrete objectives, 

outlining key health conditions that are of priority and indicators that can be used for assessment. 

This also forms priorities at the higher, strategical, level. We will return to this information in 

examples used in the following sections.  

3.4 Risk Factors and Events 

In general terms, we refer to risk as the likelihood of a medical event occurring over a specified time 

period. This could be the onset of disease, developing co-morbidities or fatality. For example, a risk 

event is dying from myocardial infarction (heart attack). The time period is important, so the risk 

would be, e.g., “dying from myocardial infarction within 1 year”. As such, Figure 2 expands Risk to 

show that it comprises an event and a time period. 
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Figure 2: Risk stratification elements expanding Risk to show relation to Event and Time period. 

 

Risk factors are things that influence the risk. This could be a wide range of factors including things 

that people can and cannot change. It is the latter that is of key relevance to policies, such as diet, 

physical and social activity levels. Examples of the former include age and gender, which may be 

used by risk stratification tools, but it would not be factors that policies can address. That is, policies 

can only address factors that are feasible to change. 

3.5 Risk Stratification 

If we take some examples from the above sections, we may define the following: 

¶ Objective: reducing premature mortality from cardiovascular disease. 

¶ Risk: a person dies from myocardial infarction within one year. 

¶ Risk factor1: age, gender, obesity and activity levels. 

Based on the risk factors, the purpose of a risk stratification tool is to evaluate the likelihood of the 

risk and stratify this information to the population level. As such, we are not dealing with specific 

individuals but policy-relevant population segments (e.g., gender, age, socioeconomic). 

As discussed earlier in this document, we are concerned with population level risk stratification by 

means of data-driven tools (supervised machine learning classifiers) to determine what proportions 

and segments of a population are at different degrees of risk (low, medium, high). In Section 4, we 

                                                

1
 There are many known risk factors for myocardial infarction. Providing a few examples here for simplicity. 
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propose a risk stratification process for creating these tools, making a shift from expert-driven to 

data-driven risk stratification2. 

Risk factors are identified from evidence in community and clinical processes accessed through 

holistic healthcare records developed in the CrowdHEALTH project. Due to the data-driven 

approach, we may also identify new risk factors. 

The risk stratification tools will help provide evidence for new and amended policies, what key 

factors could be used in policies and population segments priorities. A high level depiction of this is 

provided below in Figure 3. 

 

 

Figure 3: High level illustration of how risk stratification supports policy making. 

 

Some generic questions this risk stratification research can help answer: 

¶ What is impacting on our policy objectives (strategy)? 

o This could raise awareness of new issues/risks. 

o Where are policies needed? Are new policies needed? Do existing policies need to 

be updated? 

¶ What are the key risk factors? 

o Are there new risk factors? 

¶ Who should we target with our policies? 

                                                

2
 Interested readers may refer to a literature review of risk stratification in CrowdHEALTH Deliverable D2.1 [1]. 
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o What segments of the population are at greater risk? 

We note that it is beyond the scope of this work to handle how risks can or should be addressed, 

except for providing indications of key risk factors impacting on the risk.  

4 Risk Stratification Process 

At a very high level, the risk stratification process takes Holistic Health Records (HHRs) and a 

specified medical event as input, and produces a machine learning classifier which can classify 

HHRs as low, medium and high risk according to the chosen medical event. The resulting classifier 

can then be used as a risk stratification tool, to classify new HHRs according to risk, of which the 

results can then be aggregated into population level statistics. 

A flowchart illustrating the risk stratification process is provided below in Figure 4. We then give a 

high level overview of the parts of this process before discussing each in more details in respective 

sections below. 
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Figure 4: Risk stratification process flowchart. Parallelograms indicate stored data. Blue text indicates 
inputs to the corresponding node. 
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In order to produce a suitable risk stratification tool, the risk stratification process must contain the 

following sub-processes: 

¶ Pre-processing sub-processes: 

o Feature and instance extraction:  a process to extract the relevant features and 

instances from HHRs. 

o Temporal risk labelling: a process to label instances generated from HHRs containing 

the medical event of interest according to their time to the event; this defines the risk 

of the associated instance. 

o Missing data handling: a process to handle missing data, either by imputing missing 

values or by statistical treatments. 

¶ Classification sub-processes: 

o Training and testing set selection: separating the extracted instances into a training 

set and testing test depending on the method and classifier type. 

o Feature selection: a set of feature selection processes which can work in conjunction 

with the classifier training processes. 

o Classifier training: a set of processes which can train and test a variety of supervised 

and semi-supervised classifiers. 

o Output of the optimal classifier: a process to return the most optimal classifier tested 

or to combine multiple trained classifiers into a single classifier. 

¶ Stratification sub-processes: 

o Active conversion of the classifier: a process which converts the classifier such that it 

can classify HHRs directly. 

o Converted classifier application: a process to apply the converted classifier to the set 

of HHRs and return a set of classified HHRs. 

o Statistics extraction: extract population-level statistics for use in policy making. 

The pre-processing sub-processes will largely be beyond the state-of-the-art as we aim to capture 

an essential aspect of medical risk: the fact that medical risk can change over time. In order to 

capture this aspect, one must determine a way to extract multiple instances from a HHR, to dictate 

the temporal evolution of the corresponding patient’s medical risk; this will be the subject of Section 

4.1.  

Further to the feature and instance extraction process, we must also determine a way to label these 

instances with respect to risk. This is performed by the temporal risk labelling process, and will be 

further expanded in Section 4.2.  

Once the risk labelling is complete, the machine learning classification problem is set up, and one 

can then begin to undergo the modelling of missing data and other pre-processes; these will be the 

subject of Sections 4.3 and 4.4 respectively.  

For classifier training, the pre-processes only occur as an off-line process to train the relevant 

classifier. However, when the classifier is eventually applied to new HHRs, the feature and instance 

extraction process must be used as an on-line process; the reasoning for this is elaborated in 

Section 4.8. 
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The classification sub-processes at this level are well known within the state-of-the-art [21], and we 

shall not deviate from this macroscopic structure. In turn, we shall discuss the possibilities for 

training and testing set selection in Section 4.5, feature selection in Section 4.6, and classifier 

training in Section 4.7. These processes will occur as off-line processes only. 

The stratification sub-processes are there explicitly as the conversion process between instances 

and HHRs, and the interpretation of the classification results for the policy maker. With respect to 

the classifier application, the primary difference between the state-of-the-art and the classification 

approach of new HHRs described in this deliverable is the conversion sub-process. This must be 

performed as the classifier is trained on instances, not HHRs, and as such one must convert the 

classifier to one that can classify HHRs for the purposes of risk stratification. Consequently, 

conversion must be an on-line process; this will be discussed in Section 4.8. 

As for statistics extraction, the details of this module should correspond to the interests of the policy 

maker. Hence, the function of these sub-processes should be in line with the possibilities outlined in 

Section 3. A brief exposition of this topic is given in Section 4.8. 

Further to this list of essential processes, there are other possible pre-processes that can be added 

to increase the productivity of the tool. These are: 

¶ Class imbalance sampling: Performing over-sampling or under-sampling to attempt to 

address the class imbalance problem. 

¶ Missing data computations: Computing statistics such as the feature means and covariance 

matrix of the dataset for the missing data handling process. 

¶ Output of the instances: The pre-processing required to output the extracted instances in a 

specific format. 

Within each sub-process, there is flexibility in how the process is ultimately executed. The following 

subsections will elaborate more precisely about how each sub-process functions and the methods 

available will be outlined. Furthermore, we shall discuss whether each sub-process is in line with the 

state-of-the-art techniques available or goes beyond the state-of-the-art. 

4.1 Feature and Instance Extraction 

As the HHRs in CrowdHEALTH are under development at the time of writing, some of this content is 

on certain assumptions. We assume that HHRs contain, as a subset, the information contained 

within Electronic Health Records (EHRs). Furthermore, it is expected that HHRs will also cover, at 

the very least, the types of data that will be available from the project use cases; please see [22, 23] 

for more details on the use-case data types. Given this expectation, we shall assume that the HHR 

will contain: 

¶ Primary care data. 

¶ Secondary care data: 

o Time and length of hospital visits, for hospitalisations, emergency visits, and 

outpatient visits. 

o Symptom details. 

o Scheduled laboratory tests and their results with appropriate units. 
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o Information about morbidities and diagnosis information. 

o Treatment details. 

¶ Demographics data. 

¶ Fitness data. 

¶ Social data relevant to health. 

¶ Nutrition data. 

¶ Lifestyle data. 

Each data type should carry an appropriate timestamp indicating the temporal order of events. In 

later versions of this process, it is expected that more details about the data structure of HHRs will 

be known (particularly more specifics about the primary and secondary care data), so this process 

may be reformed in a later version once a detailed schema is available. In principle, some of these 

data types will also come from real-time streaming sources; in this case, the data should be 

appropriately aggregated into regular recorded intervals for ease-of-use. 

Further to the raw information contained in the HHRs, it is also expected that the temporal positions 

of the information will also have a structure. We shall assume that the fitness data, nutrition data, 

lifestyle data and social data are recorded at regular intervals, or can be represented in this fashion 

by aggregation. With this assumption, the temporal structure is regular. In the case that the HHR 

only contains this type of information, the instance extraction process is simple: extract the various 

components of the data at each regular time interval and form the instance from these components. 

In the case that each data type is taken at differing regular intervals, then one should find some 

suitable period over which the data can be suitably aggregated and form an instance from the 

aggregated data. 

In the case of secondary care data, the temporal structure is more complex; there are several 

contributing factors to this complexity: 

¶ Healthcare professionals in any one hospital visit will typically undergo a diagnostic process 

to determine the cause of the patient’s symptoms. The diagnostic process is ultimately a 

process which aims to collect information about the health state of the patient, and therefore 

information is obtained and placed into the patient’s HHR as a result of the process being 

performed. The diagnostic process may also include details of several treatments and their 

effect on the patient. 

¶ After a particular diagnosis or set of diagnoses, the healthcare professional may request that 

the patient has check-ups, regular or irregular, by which tests to ensure the patient’s stability 

are performed. 

¶ The patient may take it upon themselves to undergo regular full health check-ups to ensure 

they are in a good state of health. 

Given the additional complexity of secondary care data, it makes sense to construct an automated 

way of finding diagnostic processes and check-ups within a health record, and then use the 

information contained within the diagnostic processes or check-ups as one instance. This 

automated process will likely involve an unsupervised learning approach in order to appropriately 

cluster timestamps according to their relative temporal distances; this approach is known as the 
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clustering of temporal event processes [24]. A simpler, but less effective, approach is to simply take 

information contained within a hospital visit; some data will be retained in this approach but some 

will be lost. In the event that the other regular data types are present, one may aggregate the 

records in the time period specified by the instance. We will likely utilise the clustering of temporal 

event processes approach. 

In Section 3.4, we state that in order to define medical risk, one requires the definition of a medical 

event of interest as well as an associated time period for which the event has a probability of taking 

place. Given these two facts, it is sensible to have a specified time period from which instances are 

extracted, as the time period should correspond to the associated risk time period. The length of the 

time period should be adjusted to maximise the classification performance; hence, empirical tests 

are needed to determine this time period. The only condition on the nature of the medical event is 

that it must be identifiable from the data; otherwise one cannot define the risk in a data-driven 

manner. For example, one could define the medical event as the death of a patient due to a chronic 

condition; it is evidently not possible to use this medical event definition if the subject HHR dataset 

does not contain information about chronic conditions. 

Let us now discuss the possible features that can be extracted. We aim to extract two different types 

of features: features that represent some information local to the specific instance, and features that 

describe the overall HHR. Given this aim, each instance in the framework could contain the 

following features: 

¶ Features specific to the instance: 

o Types and results of a specific set of laboratory tests. 

o Nutritional intake information: calories, macronutrient levels etc. 

o Short-term fitness information: specific fitness test measurements, weight, BMI (Body 

Mass Index), etc. 

o Short-term lifestyle information: indicator for whether patient regularly exercises etc. 

o Missing data indicators for each feature to indicate if the variable is missing. 

o Social indicators specific to the patient’s behaviour in relation to their own health: 

adherence to taking treatment etc. 

o The time period that the features were extracted from. 

o The length of the time period. 

¶ Features describing the HHR: 

o A set of indicators corresponding to whether past instances have contained a 

specified set of medical events, the co-medical event indicators. 

o Demographic information: age, sex, country of origin. 

o Long-term lifestyle information: indicator for whether the patient is a regular tobacco 

smoker, general diet indicator. 

o Long-term fitness information: indicators for whether patient was obese in the past 

etc. 

o The pseudonymised HHR ID. 

It is expected that, for some features, there will be multiple values taken within an instance. These 

values should be aggregated in a sufficient manner, so let us now discuss the aggregation process. 



D5.3 Data-driven Analytics for Risk 
Stratification: Design and Open Specification 

06/11/2017 

 

 

 

Page: 21 

As an example, consider the set of features corresponding to laboratory tests. Due to the nature of 

the diagnostic process, each instance will, in general, contain multiple numeric measurements for 

the same set of laboratory tests, and each instance may contain a different variety of tests, resulting 

in different extracted features. Having different extracted features for each instance can be 

problematic for the eventual application to new HHRs, as any machine learning classifier can only 

handle a fixed number of features as input. In order to solve these problems associated with 

laboratory tests, we must: 

1) Define the specific set of laboratory tests to be extracted as features. 

2) Combine test results for each instance in a feasible manner. 

The list of laboratory tests to be extracted can be constructed by a domain expert (as domain 

experts routinely order the relevant tests for the diagnosis of a medical event), or can be extracted 

directly from the data through the determination of the frequency each test is used in conjunction 

with the medical event, with a threshold frequency to be tested against. The combination of the test 

results can proceed by simply averaging the numeric values for each laboratory test type; the 

feature is then represented by the average value. This procedure can also be used to aggregate the 

data types with regular temporal structure: the nutrition, fitness, lifestyle and social data types. 

However, we shall not go into details about these processes here. 

Let us now discuss the construction of the co-medical event indicators. Again, there are two 

possibilities: the list of relevant associated medical events can be constructed by a domain expert, 

or one can perform an analysis as a pre-processing step to determine the most frequent co-medical 

events that temporally precede the subject medical event. As an example, consider the diagnosis of 

a disease as the medical event. One may look for the diagnoses of the most common co-morbidities 

associated with the diagnosis as the co-medical events. This requires taking each HHRs with the 

diagnosis of interest, extracting the list of diagnoses for each HHR, and counting the occurrences of 

each diagnostic code. The number of co-morbidities to keep track of will ultimately depend on the 

data and the conditions of interest, and their inclusion should be dictated by a threshold frequency 

to be tested against. In practice, the type of medical event will dictate the type of co-medical events 

to keep track of, and this will be the subject of an empirical study we aim to perform. 

Let us now discuss the missing data indicators. If a value for a specified feature cannot be found, 

the value of the feature should be equal to a specified missing data indicator character. 

Furthermore, for each feature, there should be an indicator which takes the value 0 if the 

corresponding feature value is not missing, and takes the value 1 if the feature value is missing. 

These indicators can be used in sensitivity analyses and as such is useful to contain as features. 

However, until empirical studies are performed on the effectiveness of introducing such features into 

the classification procedure, it cannot be said whether they will be ultimately included.  

With regards to the HHR ID, we expect that this will not be used as a feature for training the 

machine learning classifiers. It should only be used to connect the various instances that are 

generated from the same HHR for use in temporal risk labelling (Section 4.2) and for classifier 

conversion (Section 4.8). 

Let us now compare this procedure with the current state-of-the-art. Firstly, the current state of the 

art only considers electronic health records as the source for the feature and instance extraction 
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process; hence, the wealth of information that will be available in HHRs is not available to the 

current state-of-the-art. Secondly, the state-of-the-art extraction procedure is to extract features 

pertaining to the whole health record and to treat the entire health record as one instance. This can 

be seen both in data-driven methodologies [2, 3, 5, 8, 12, 13, 15, 17, 25], as well as in models 

produced by domain experts [26–31]. This procedure does not fully appreciate the temporal nature 

of the health record, and some essential temporal evolution information may be lost. The procedure 

specified in this subsection is a first attempt at extracting this temporal evolution, and as such goes 

beyond the state-of-the-art. In this procedure, the HHR will, in general, contain multiple instances 

and, by separating the HHR into instances in this fashion, some temporal information is gained by 

storing the values of the features pertaining to the HHR. 

Upon completion of this process, a set of instances and features should be stored in memory. In the 

event that the data cannot be contained within memory, the set of instances and features can be 

output into a CSV (Comma Separate Values) format for later use. 

4.2 Temporal Risk Labelling 

Temporal risk labelling is the process of labelling the subset of instances that are connected to one 

of the conditions of interest through the HHR. This is distinct from the process of risk stratification, 

which is the risk classification of HHRs, including those who have not had any of the conditions. For 

this subsection, we shall refer to the medical event which is the subject of the risk assessment as 

the medical risk event. We will discuss an approach to performing temporal risk labelling here, with 

examples to illustrate the concept. 

 

2007 2017
2008 2009 2010 2011 2012 2013 2014 2015 2016

Co-Medical
Event Instance Irrelevant Instance

Co-Medical
Event Instance

2007 2017
2008 2009 2010 2011 2012 2013 2014 2015 2016

Irrelevant Instance Irrelevant InstanceIrrelevant Instance

Co-Medical
Event Instance

Medical Risk
Event Instance

Irrelevant Instance

 

Figure 5: A depiction of two patient health record timelines over the ten year period 2007-2017 at the 
level of the generated instances. 

 

To illustrate this process, it is best to look at two example patients: one with the medical risk event 

and one without. Figure 5 shows two timelines, each representing two HHRs at the level of the 
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generated instances. The patient with the blue timeline has a recorded medical risk event, and the 

patient with the red timeline does not. Scientifically, one cannot deduce any information about a 

medical event from a patient that has not experienced the event. Therefore, the patient with the red 

timeline should be ignored in this procedure. We will return to the reasons why at the end of this 

section. However, the patient with the blue timeline has a record of the medical risk event occurring, 

so they should be identified by the risk labelling procedure. This identification process continues for 

all possible HHRs in the dataset. Once all of the relevant patients have been identified, one of two 

possible procedures can follow.  

The first potential procedure is as follows: 

For each HHR containing a record of the medical risk event: 

1) Find the instance containing the medical risk event. This is known as the medical risk event 

instance. Give this instance the “high” risk label. 

2) Any instance with a timestamp after the medical risk event instance should also be given the 

“high” risk label. 

3) Instances are given the “medium” risk label if the instance is within some specified time 

period 𝑇𝑚𝑒𝑑𝑖𝑢𝑚 of the start time of the medical risk event instance. 

4) Any other instance preceding the medical risk event from the same HHR is given the “low” 

risk label. 

The implication of this procedure is that all instances generated from a HHR containing the medical 

risk event obtain a risk label of “low”, “medium” or “high” based upon the time to the medical risk 

event. Evidently, the difference between the “medium” and “low” risk labels hinges on the definition 

of the specified time period 𝑇𝑚𝑒𝑑𝑖𝑢𝑚. For example, for the blue patient timeline in Figure 5, if the time 

for the “medium” label is 5 years, then the two instances in the time period 2011-2013 will be 

labelled as “medium”, and the three instances preceding those instances will be labelled as “low”, as 

those instances are more than 5 years old relative to the medical risk event. The instances 

generated from the red patient timeline in Figure 5 will remain unlabelled. 

The second potential procedure is a generalisation of the first. The procedure is as follows: 

For each HHR containing a record of the medical risk event: 

1) Find the medical risk event instance. Give this instance the “high” risk label. 

2) Any instance within a specific “high risk” time period, 𝑇ℎ𝑖𝑔ℎ preceding the start time of the 

instance containing the medical risk event is given the “high” risk label. 

3) Any instance generated after the medical risk event should also be given the “high” risk 

label. 

4) Instances obtained from the same patient record which are not in the “high risk” time period 

are given the “medium” risk label if the instance is within some specified “medium risk” time 

period preceding the medical risk event. 

5) Any other instance preceding the medical event from the same patient record is given the 

“low” risk label. 
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The second procedure essentially adds a second parameter, the high risk time period 𝑇ℎ𝑖𝑔ℎ, which 

allows for instances within a certain time preceding the medical risk event to be labelled as “high” as 

well as the instance containing the medical risk event. It is expected that these time periods should 

be free parameters that are specified by both the data and the set of conditions considered. 

It is important to note that these procedures can also vary by how to handle instances after the 

medical risk event has occurred. In the above, we have assumed that a person stays “high” risk 

after the medical risk event has occurred. However, in some cases, it may make sense to label 

instances after the medical risk event as “low” or “medium”, depending on outcomes of treatment, 

for example. This will be the subject of an empirical study we aim to perform. 

Regardless of the specific labelling procedure, it is important to note that both procedures take into 

account an essential feature of medical risk: the risk of developing a condition is not static, but 

varies with time. Labelling risk in this fashion is an essential step in the risk stratification process, as 

not only does it produce viable training and testing sets for the classification module later on, it is 

also expected to capture the temporal nature of risk within the risk stratification tool. More precisely, 

the risk label associated with an instance is reflective of the probability of the medical risk event 

occurring. 

The state-of-the-art procedure for risk labelling is performed at the level of the health record (as 

instances are equivalent to health records in the state-of-the-art), and can occur by two methods: by 

a specific domain expert model [26–31], or by simply labelling a health record as “high” risk if the 

patient has the condition of interest and “low” if the patient does not have the condition [3, 5, 8, 12, 

13, 15, 17, 25]. In comparison to the temporal risk labelling procedure, these methods do not take 

full advantage of the temporal structure of the health record, and as such do not fully reflect the 

temporal nature of medical risk. 

When this process is completed, a subset of the instances should have a risk label (instances 

pertaining to HHRs where the medical risk event in question is recorded), whereas others will have 

the risk label missing with the missing data indicator as the label. Given that the set of instances 

contains both unlabelled and labelled instances, the classification problem is intrinsically a semi-

supervised classification problem. The reason we have proposed this approach is to avoid labelling 

instances we cannot label with sufficient certainty as this bears a risk of introducing errors in the 

training data. 

4.3 Missing Data Handling 

Inevitably, there will be missing data within the HHRs. There are several reasons why data can be 

missing in the HHRs, such as: 

¶ Human error in recording information in a person’s HHR. 

¶ Technical error when importing data into the CrowdHEALTH platform. 

¶ The data is deemed unimportant and is omitted when recording information in a person’s 

HHR. 
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¶ In the case of laboratory tests, the tests may simply not be executed, e.g., due to being 

deemed unnecessary, too expensive or not supported at a particular medical practice for 

other reasons. 

¶ The information is intentionally excluded as it may be an identifier to the corresponding 

patient. 

Hence, we must have a process that handles this missing data. In order to formulate a process for 

handling missing data, one must first classify the type of missing data. The different types of missing 

data are: 

¶ Missing-completely-at-random (MCAR): If a feature value is MCAR, the probability of the 

feature being missing in an instance does not depend on the other feature values. 

¶ Missing-at-random (MAR): If a feature value is MAR, the probability of the feature being 

missing in an instance does depend on the other feature values. 

¶ Missing-not-at-random (MNAR): If a feature value is MNAR, the probability of the feature 

being missing in an instance depends on whether the feature is missing and, in general, 

depends on the other feature values. 

For the case of the information contained within HHRs, one may make the ansatz (educated guess) 

that the data will be MNAR, as laboratory tests are chosen according to a domain expert’s 

professional opinion. Furthermore, one would expect that certain medical events are more likely if 

the patient has already experienced certain medical events in the past; hence the absence of 

certain medical events is non-ignorable. In practice, to determine whether the missing data is 

MNAR, one would typically perform a sensitivity analysis to check how the missing-at-random 

assumption is violated. However, we shall defer this to a later version of this process, after data 

from project use case partners is available for analysis. Therefore, for the purposes of this version, 

we shall assume that the missing data can be modelled as MAR as a first step, then proceed to 

incorporate missing-not-at-random methods in later versions.  

The missing data will be handled according to one of the methods outlined in Section 5.1.2. At a 

high level, we are likely to have one of the following cases: 

1. Instances with missing data could be discarded. 

2. Values for missing data could be imputed. 

3. Missing data may remain if a classifier that handles this is adopted. 

When the missing data handling has been completed, the dataset may have been modified: either it 

has been reduced (case 1), or the set of instances contains imputations for the missing values (case 

2). Alternatively, the set of instances is untouched and the missing data is taken into account in the 

classification processes. 

4.4 Other Pre-Processes 

Once these processes are reached, one should have: 

¶ A list of features extracted from the HHRs, where features that are missing above a specified 

proportion are removed. 
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¶ Information about the possible values the features can take along with the corresponding 

units. 

¶ Instances of feature vectors that have been extracted from the HHRs, with the following 

attributes: 

o All missing values, other than the risk categorisation, are either imputed or treated in 

another manner. 

o A feature dedicated to the risk label, with some instances having a label whereas 

others do not. 

The set of instances should be either stored in memory or stored in a CSV file, where the first and 

second rows indicate the variable name and variable type respectively. 

Let us now discuss the other optional pre-processes. Class imbalance sampling is the action of 

creating a new dataset by adding or removing instances such that the class imbalance is absent. 

This can be achieved by: over-sampling the minority classes in the original data set, i.e., sampling 

the original dataset with replacement until the classes are equal in size; removing instances from 

the majority classes in the original data set (known as under-sampling); or a combination of the two. 

Another possibility is the pre-processing required to output the extracted instances. This pre-

process should output the associated laboratory test names, the associated numbers and their 

units, as well as the other features along with their descriptions. It should also output the information 

corresponding to the extraction period and the missing data pre-process choice.  It would be 

sensible to have the option to output the set of instances, as the risk stratification process allows for 

multiple pathways and possibilities; being able to save the set of instances with information about 

how the instances were generated could be of great benefit to the planned empirical studies. 

4.5 Training and Testing Set Selection 

Often in practice, the splitting of instances into training and testing sets is a trivial operation. 

However, in this case, there are two characteristics of the data that can be exploited: 

¶ The set of instances contains instances that are labelled according to risk and instances that 

have not yet been labelled. 

¶ The feature and instance extraction process intrinsically takes into account a time period of 

extraction. 

Given that the set of instances contains both unlabelled and labelled instances, the classification 

problem is intrinsically a semi-supervised classification problem. In semi-supervised problems, the 

unlabelled instances as well as the labelled instances can be used to train a classifier, as long as 

the supervised classifier has an appropriate modification, or an explicit semi-supervised classifier is 

used. Furthermore, if a time period of extraction is specified, one can simply choose another non-

overlapping time period and obtain a completely new data set. Therefore, there are several 

possibilities for training and testing set selection: 

1. Supervised approach: one separates only the labelled instances into training and testing 

sets (the supervised approach). 
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2. Semi-supervised approach: one can take a subset of the labelled instances as the testing 

set, and the rest of the instances as the training set. 

3. Temporal approach: one can use the pre-processor with two different non-overlapping 

extraction time periods to produce two sets of instances. Then, the training and testing sets 

can be selected from each set of instances respectively according to the supervised 

approach or the semi-supervised approach. 

The determination of which approach is the best approach to take highly depends on the structure 

of the data, and hence one cannot be definitive in choosing one approach over another until data is 

obtained for analysis. We expect this to be determined through an empirical study of these 

approaches. 

4.6 Feature Selection Processes 

The feature selection processes aim to determine the most relevant set of features from the 

extracted feature set for use in classification. There are several feature selection methods: 

¶ Wrapper methods: wrapper methods work in conjunction with a machine learning classifier 

to produce the optimal feature set according to the performance of the resulting classifier. 

This involves the repeated training of the chosen classifier on each selected feature set and 

evaluating the performance of the classifier according to some criteria. The feature set that 

maximises the classifier’s performance is chosen. 

¶ Filter methods: filter methods explicitly are performed before the classification procedure. 

The feature set is chosen according to the computation of a filtering function, which is based 

upon the given feature values in each instance in the training data set and their associated 

classifications. One then typically selects the feature set based upon the values of the 

filtering function for each feature. 

¶ Embedded methods: embedded methods are methods where a feature selection method is 

intrinsic to the construction of the classifier, and as such a separate feature selection method 

is not needed. 

The performance of these methods depends heavily upon the dataset and chosen features, so an 

empirical study must be performed to determine the best method. Once the features are then 

selected, the other features are then marked to be ignored for the classifier training processes. In 

Section 5.1.1, we elaborate further on specific feature selection techniques that will be used in our 

empirical studies. 

4.7 Classifier Training Processes 

When the classifier training processes are reached, there is an initial validation process in which 

one uses a training set to train one or more machine learning classifiers, and then uses a testing set 

to test the performance. The testing phase will record and deduce a set of performance criteria for 

each classifier tested, which will be used to identify the strongest classifier. Section 5.1.4 further 

discusses validation methods such as cross-validation in the context of the challenge of addressing 

over-fitting. 
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The outcome of this validation process is not a classifier that can be deployed in the CrowdHEALTH 

platform for end-users to use. This is particularly evident if cross-validation is used, as this would 

produce many classifiers on different subsets of the data. Rather, we obtain the details of which 

classifier to use and how to configure it, including the features to use. The final step of the classifier 

training module is to train the chosen classifier, given the identified configuration, which could be 

done on the entire dataset that is available. 

We discuss a selection of relevant classifiers in Section 5.2 and note here that they will have their 

own training process that will need to be implemented. The training processes will also contain a 

way to determine whether features have been marked to be ignored by the feature selection 

process. Further to the inclusion of these classifiers, there are multiple state-of-the-art approaches 

to how the final classifier is constructed. These approaches are: 

¶ Standard approach: train each individual classifier and test it separately. Choose the best 

performing classifier according to the performance criteria. 

¶ Ensemble methods: these methods combine several trained classifiers into a single 

classifier. 

o Bootstrap aggregating (bagging): a method which creates several datasets from 

samples of the original dataset with replacement, and trains the chosen classifier on 

each dataset. The classifiers are then combined with a voting system to produce a 

single classifier [32]. 

o Boosting: a method which takes several already-trained classifiers and combines 

them with a voting system that is chosen to maximise the performance of the 

classifier according to some criteria [33]. 

Let us now discuss the performance criteria. The performance statistics are predominantly formed 

from the confusion matrix [34], which is a table containing information about the predicted 

classifications of instances made by the classifier compared with their true classifications. From the 

confusion matrix for the training and testing sets, one can deduce the following performance 

measures: 

¶ Classification accuracy: the proportion of the dataset misclassified by the classifier. 

¶ Individual classification rate: the proportion of instances of a specific class that were 

correctly classified. 

¶ Individual misclassification rate: the proportion of misclassified instances that were 

misclassified as a specific class. 

¶ Weighted classification accuracy: an accuracy measure for which classifications and 

misclassifications can be given different weights in the computation of the accuracy. 

These performance measures will be compiled for each of the testing and training sets and will be 

used in addressing the data training challenges outlined in Section 5.1. Specifically, the comparison 

of these statistics will be particularly important for deducing whether the classifier has suffered from 

over-fitting. We discuss methods to control over-fitting in Section 5.1.4. 

Further to the classification performance, we shall also examine scalability when assessing a 

classifier performance. This is the determination of how the classifier training and testing process 
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runtimes scale as a function of the number of instances and number of features, and hence is 

important for the deployment of a classifier into the risk stratification tool to understand the eventual 

runtime of the tool. 

Each classifier and approach will be empirically tested once training data is available, and a best 

classifier and approach will be chosen according to the performance criteria. Once the best method 

is found, the parameters that were induced by the classifier training process are then stored so that 

one can utilise the classifier in an on-line environment, as discussed above. 

4.8 Classifier Application and Statistics Extraction 

This section describes the process of converting the classification results from the level of instances 

to HHRs, applying the classifier to new HHRs, and the creation of statistics based upon the 

predicted classifications.  

In the preceding classifier training sub-processes, we focused on the risk classification of individual 

instances. However, as we are ultimately forming a risk stratification tool, we require a classifier that 

can classify HHRs directly, as opposed to the instances that are generated from them. Hence, the 

outputs produced by the classifier trained via the procedure specified by Section 4.7 requires 

conversion to meet the requirements of the tool. 

The risk stratification tool should assign a risk label to the whole HHR according to the HHRs 

structure. Given the temporal risk labelling procedure in Section 4.2 and the fact that the risk label is 

indicative of the probability of the medical risk event occurring, the most sensible conversion 

process is to classify the HHR according to the classification of the most recent instance generated 

from the HHR. This is because the most recent instance is the most reflective of the patient’s 

current state of health. Note that, as the conversion process requires the most recent instance to 

assign a classification to the HHR, classifier conversion must be performed as an on-line process. 

Utilising this conversion process, one can then apply the classifier to the HHRs. The results can 

then be compiled and used for the production of aggregated statistics. 

From this point, one can use a combination of the generated instances and the predicted 

classifications to generate population level statistics for the policy maker. These statistics can 

include: 

¶ Proportions of the HHRs in the assigned risk categories, as percentages. 

¶ Proportions of co-medical events identified in each risk category. 

¶ Proportions of non-missing laboratory tests in the case of secondary care data. 

These statistics should be output in a user-friendly format, such as an Excel spreadsheet, for ease 

of use. 

5 Techniques for Risk Stratification 

In this section we discuss the techniques relevant for performing data-driven risk stratification, used 

as part of the risk stratification process discussed above in Section 4. The purpose of this section is 

to review and discuss techniques that may be used as part of this work in CrowdHEALTH. However, 
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as we will return to later, the exact techniques will be chosen based on data analysis and evaluation 

processes outlined above in Section 4. 

5.1 Data Processing and Training Challenges 

5.1.1 Feature Selection 

Selection of the most significant and informative features and removal of the remaining features (or 

in other words compression of original feature set to smaller set) are one of the most important 

tasks in design of the efficient classification model. High-dimensional data not only requires longer 

computational times but can also affect the accuracy of analysis [35]. Thus, we try to reduce data 

dimensionality by identifying a subset of variables or latent factors that preserve as much of the 

characteristics of the original data as possible. The most common way to do that is with feature 

selection that aims to select an optimal subset of existing features. 

As previously outlined, feature selection techniques consist of filtering, wrapper, or embedded 

methods. Each of them has its own positive and negative aspects. Filtering methods limit the 

number of features by calculating a score designed to estimate the usefulness of each feature. 

Algorithms of the filter model do not require explicit class labelling and are independent of any 

learning model and therefore do not have bias associated with any learning models. Another 

advantage of the filter model is that it allows the algorithms to have a very simple structure, which 

usually employs a straightforward search strategy, such as backward elimination or forward 

selection. The benefits of a simple structure are two-fold. They are very fast and due to their simple 

design, and they are easy to understand. This explains why most feature selection algorithms and 

real world applications use filters. On the other hand, when comparing filter models with wrapper 

and embedded models, wrapper and embedded models usually select features that result in higher 

learning performance [36]. One of the most used filter models is minimum redundancy maximum 

relevance (mRMR) method that iteratively selects features sharing the most mutual information 

(relevance) with the least redundancy [37] .  

In contrast, wrapper methods require a predetermined learning algorithm to identify relevant 

features. In the process, they select a subset of features (i.e., “wrap” the feature selection) for 

targeted learning models by using evaluation metrics such as cross-validation accuracy [38][39]. For 

some learning methods, they achieve high accuracy, but they are also very computational 

expensive (worst case search space is 2^(number of features)). 

Currently the embedded feature selection algorithms are believed to be the most efficient [40]. They 

incorporate feature selection as a part of the model fitting/training process, and features’ utility is 

obtained based on analysing their utility for optimizing the objective function of the learning model. 

They achieve higher accuracy, since they look into the structure of the involved learning model and 

use its properties to guide feature evaluation and search. Currently, most embedded feature 

selection algorithms are designed by applying L0 norm [41] or L1 norm [42] as a constraint to 

existing learning models to achieve a sparse solution, which can in some cases enable obtaining 

the unique global optimal solution in a very efficient way [43]. 

In the field of risk stratification and other medical real world cases, where datasets included a lot of 

features and the feature selection is one of the key components in the classification tasks, we can 



D5.3 Data-driven Analytics for Risk 
Stratification: Design and Open Specification 

06/11/2017 

 

 

 

Page: 31 

see several approaches. Based on the data specifics different approaches produced good results. 

In [44], the authors proposed a new hybrid feature selection scheme that was used to determine 

most relevant features for risk stratification classification of benign and malignant tumours in breast 

ultrasound images. The proposed approach used ten different evaluation criteria to decide the 

relevance of a particular feature. In [45], the authors applied several variations of the genetic 

algorithms that can be used as data compression algorithm which chooses a feature subset having 

the equal discernibility as the initial set of features. The algorithm was applied to select the best 

features for breast cancer diagnosis. 

For the purpose of feature selection as part of risk stratification in CrowdHEALTH, we plan on 

developing a feature selection approach that would achieve best performance by combining the 

opinions of multiple feature selection methods. For these opinions we will use several different 

feature selection techniques with special focus on several different types of feature selection 

methods that use genetic algorithms as they seem to adapt well to deferent types of data sets. 

5.1.2 Missing Data 

As per the discussion above in Section 4.3, missing data can be considered to fall under three main 

categories: a) Missing-completely-at-random, b) Missing-at-random, and c) Missing-not-at-random. 

Regardless of the category, missing data need to be properly handled in order to facilitate smoother 

processing of the complete dataset, and more accurate analysis results. Further, we note that some 

classifiers are able to deal with data that has got missing values denoted by a missing-data 

placeholder, while others do not. We will discuss classifiers further in Section 5.2, and give a 

general treatment of missing data handling here.  

Missing data handling is considered a key process in data analysis, and within the context of 

CrowdHEALTH it will be handled in a bi-fold way. It will be handled 1) as a generic process, part of 

Data Cleaning functionality in the CrowdHEALTH platform, and 2) as a specific process, integrated 

at algorithmic level within the context of the risk stratification modelling. 

We shall discuss both cases further in respective sections below. 

5.1.2.1 Data Cleaning in the CrowdHEALTH Platform 

This will be documented in D3.19 [46] due October 2018, but we give a brief overview here. 

Within the context of the Data Cleaning process (1), the expected functionality is as follows: 

¶ Last non-zero values. In cases with low variation, last non-zero values can be used to 

substitute missing values. 

¶ Moving average. Moving average is used when depending on the fluctuation of the 

waveform handled; we wish to substitute the missing value with the average of the previous 

and the next non-zero values. 

¶ Linear regression. This is a linear approach for modelling the relationship between a scalar 

dependent variable y and one or more explanatory variables (or independent variables) 

denoted X. 
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This generic missing data handling process will mainly take place for the initial data source batch, 

where a statistically significant number of values are made available in order to perform the process. 

The same applies for future batches of data with low frequency updates (e.g. periodical update of 

information every 3 or 6 months).  

However, future values with frequent updates pushed to the CrowdHEALTH data store cannot be 

cleaned during storage time since these data will not be compared to historical values. This signifies 

the need for additional data cleaning during analysis. Towards this end, apart from the pre-storage 

time data cleaning, additional cleaning logic will be integrated within the context of the algorithms 

supporting the risk stratification modelling. 

To help clarify, consider the following. After the CrowdHEALTH data store has been populated with 

an initial batch of historical data from a particular source, a timestamped record should contain the 

time of an event as well as the value and units of the measurement. However, if no value is 

specified, the missing value cannot be handled and the record will be included with a N/A value. 

Nevertheless, during data analysis, all information provided until that point will be aggregated, 

including the (cleaned) data stored initially, along with the aforementioned missing value. The risk 

stratification tool needs to either a) discard that record or b) apply a missing value handing 

technique to impute the value(s).  

We will discuss potential approaches further below, but note that the post-processing process needs 

to be sensitive what data is imputed. Data missing-not-at-random, for example, may not be 

appropriate to impute. Note that discarding data does not mean it is deleted from the 

CrowdHEALTH store, but it is discarded from risk stratification processes. 

5.1.2.2 Discarding Missing Data 

This is the default method in most statistical packages as it is the easiest to implement. However, 

we note that, depending on the quantity of missing data and data set size, this may have a negative 

impact on the classifier’s performance compared with the imputation methods. Here, we shall further 

discuss two approaches to discarding missing data: case deletion and pairwise deletion. 

Case Deletion 

This is also known as complete case analysis as it removes all records (data points) that have one 

or more missing values from the feature set. We refer to this as a “case” in this context. There are 

derivations of this method that consider the proportion of missing values and if that proportion is 

above certain threshold the case is discarded. The same strategy can be used for discarding 

features with very high levels of missing data, but their significance for the analysis should be taken 

into consideration first. Case deletion should only be used if there is minimal loss of data sample 

and there is no particular structure or pattern in the dataset. Otherwise it affects the 

representativeness of the samples and could produce biased classifications. The key assumption in 

case deletion is that the set of complete cases is a completely random part of the whole sample. As 

such, this approach should only be used when data is missing completely at random.  

Some experiments show that case deletion can outperform imputation techniques such as mean or 

median imputation when the missing rate is low and the missing values are distributed randomly 
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within the dataset. However its misclassification rate increases steeply with the increase of missing 

data [47]. 

Pairwise Deletion 

In statistical analysis, an alternative to case deletion is pairwise deletion, which does not discard the 

whole case if there is missing data but only removes the specific missing values from the analysis of 

that particular variable and uses the non-missing values for the estimation of the parameters of the 

model. In this case more of the observed data is being used but each computed statistic for a 

variable can be based on different subset of the sample. Pairwise deletion works well if data is 

missing completely at random and the correlation between features is not significant. In cases of 

high correlation between the features, pairwise deletion performs poorly compared with case 

deletion [48]. 

Another problem with pairwise deletion is the estimation of a correlation matrix, which can produce 

values outside the range -1 and 1 because of the different sizes of samples used for the 

estimations. One cannot predict when pairwise deletion will produce adequate results, which can be 

an issue for general application. 

5.1.2.3 Imputation of Missing Data 

There are two main types of imputation methods we shall discuss here: traditional statistical 

imputation techniques and using machine learning algorithms to predict the missing values. 

Mean, Median or Mode Imputation 

Replacing missing values with the mean of the known values for the same feature is one of the most 

frequently used methods, which is very straightforward to implement. A variation of this strategy is to 

use the overall mean, which does not take into account the sample size of the class the data point 

belongs to.  

Since the mean is sensitive to outliers, another strategy involves the imputation of the median of the 

known values for that variable for all available values or the available values in the same class. In 

the case of categorical features, mode imputation can be used instead of mean or median 

imputation. 

There are many issues related with these naïve strategies since they change the distribution of the 

variable by only adding different statistical averages without accounting for the variation that would 

most likely occur if the values were observed, which can lead to biased predictions. They do not 

make use of any dependencies and correlations in the dataset. In cases of high correlation between 

the features, such imputation strategies can be useless or even harmful for the predictive power of 

the model. Surprisingly, though, mean and median imputation show relatively good results in some 

experiments. For example, Mundfrom and Whitcomb [49] show that using mean imputation for 

predicting records with missing values using a classifier derived from complete datasets can 

produce relatively good results. However, the experiments were conducted on quite small samples. 
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Multiple Imputation 

In Multiple Imputation (MI), the missing value is replaced by a number of possible values (in most 

cases 5-10) drawn randomly from the fitted distribution for that feature to reflect the uncertainty of 

the missing value. Other single value imputations like mean or median imputation can also be used 

for the imputed values. Models are constructed for each new complete dataset and results are 

combined at the end. Majority vote can be used for the estimation of the final result.  

K-Nearest Neighbour Imputation 

K-Nearest Neighbour (K-NN) is a machine learning imputation method in which the missing value is 

calculated by separating the sample space on fully observed data points and data points with 

missing values. For each data point with missing values, the K nearest neighbours are estimated 

from the fully observed sample using a distance metric. The popular choice for the similarity 

measure between numeric features is the Euclidian distance, whereas the popular choice for the 

similarity measure between categorical features is the Hamming distance. For categorical variables, 

majority vote estimation is used among the neighbours whereas for numeric features, mean or 

median of the observed values is used [47].  

Another variation of this method uses not only complete cases but also cases with missing values 

as long as they have the values in interest. Weighted mean can be used as well according to the 

distance of the neighbours to put more weight on the values of the closest neighbours [50].  

Batista and Monard [51] compare K-NN imputation against a C4.5 [52] Decision Tree (DT) and CN2 

[53], which can internally handle missing data classification, on the cross-validation error rates of 

classification after randomly removing values from the most predictive attributes. The experiment 

shows that K-NN misclassifies less instances than the two algorithms even for high rates of missing 

values. Jerez et al., [50] compare statistical imputation methods with machine learning ones 

(including K-NN) on the Area Under the Curve (AUC) value using a dataset with 45.61% of the data 

points having missing values. The study indicates that there is statistically significant increase of 

prediction accuracy using machine learning imputation methods, with K-NN imputation showing the 

greatest improvement.  

In comparison with other machine learning imputation methods, KNN imputation does not need to 

create an explicit predictive model to estimate the missing values. It can also easily treat examples 

with multiple missing values and both categorical and continuous variables. However, it must be 

noted that K-NN can be inefficient with large datasets as it has to search through the whole sample 

space to find the K nearest neighbours. Also, the distance measure needs to be carefully chosen. 

Imputation using Decision Trees 

Decision Trees (DTs) can be trained in order to predict missing values using the observed 

attributes. There are different implementations of this method. It has been suggested that C4.5 

algorithm is appropriate for predicting the missing values as it inherently ignores the missing values 

when calculating the information gain for the features so that it can deal with multiple missing 

attributes in a dataset. 
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Other Machine Learning Imputation Methods 

Many other machine learning algorithms can be used for estimating the missing values in the 

dataset. The main idea is training a model using the fully observed subset of the dataset and then 

using it to iteratively predict the missing values. The complete dataset is then used to train a 

classifier with the classification algorithm we choose. 

Rahman and Davis [54] describe the process of using machine learning imputation methods and 

compares K-NN, DTs, Support Vector Machines (SVMs) and FURIA algorithms for predicting 

missing values with mode/mean imputation. A cardiovascular dataset from Hull and Dundee clinical 

sites was used, which has high rate of missing value instances and class imbalance: 702 out of 823 

patients considered “Low Risk”, thus classifiers’ performance is compared mainly on Sensitivity and 

Specificity rather than Accuracy. Experimental results show that machine learning methods 

outperformed the traditional mean/mode imputation. 

One drawback of using a prediction model in order to impute the missing values is that a correlation 

and consistency between the missing value attribute and observed attributes could be introduced 

which might not otherwise exist. Another consideration is computation time if the dataset is large, as 

the pre-processing time required for dealing with the missing data can be very time consuming. 

5.1.3 Class Imbalance 

Although most of the concept learning systems usually assume that their training sets are well 

balanced, this assumption is not necessarily true. We can find several examples of imbalanced 

training sets in general and particularly in medicine, where addressing data analysis of low prevalent 

diseases is a common problem.  

The drawback of an imbalance class classification problem is that a learning algorithm that 

minimizes error rate could decide to classify all examples as the majority class in order to achieve a 

low error rate. However, all minority class examples will be wrongly classified in this case. In 

problems where the imbalance level is huge, class imbalance must be carefully handled to build a 

good classifier. 

According to Japkowicz [55] having an imbalanced training set could be an important bottleneck and 

derive into inappropriate models. The two most important features to care about the imbalance class 

problem are the training set size and the degree of imbalance. There are two families of methods 

that involve four different ways to deal with class imbalance in binary classification: 

¶ Modifying the training set 

¶ Modifying the classifiers 

We shall discuss both in respective sections below. 

5.1.3.1 Methods based on modifying the training set 

These methods consist in adding artificial individuals to the sample of the minority class or removing 

individuals from the sample of the majority class in order to artificially balance the size of each 

sample. The former method is called over-sampling or resampling, whereas the latter method is 

called under-sampling or downsizing [55, 56]. 



D5.3 Data-driven Analytics for Risk 
Stratification: Design and Open Specification 

06/11/2017 

 

 

 

Page: 36 

The method of under-sampling is focused on removing some elements of the majority class. A 

common procedure is to remove them randomly (random resampling) and another method is to 

remove those that are near the boundaries of the different classes (focused resampling) [55]. 

Based on the same approach, Liu et al. [56] used a more sophisticated algorithm, the Balance 

Cascade, where a classifier is trained using one subset of the majority class and the samples of the 

minority class. Then, the rest of the samples in N are classified. If a sample (x1) is correctly 

classified, then it is reasonable to conjecture that x1 is somewhat redundant in N and can be 

removed. 

The method of over-sampling is focused on creating artificial instances of the minority class until the 

dataset becomes balanced. In Japkowicz [55], also two ways are proposed, a random resampling 

and a focused resampling. The conclusion is that both over-sampling the minority class and down-

sizing the majority class using a uniformly random approach are very effective methods for dealing 

with the problem and is unnecessary to use the focused versions. 

Similarly, Chawla et al. in [57] described a method for dealing with the class imbalance problem 

consisting in generating synthetic samples for the minority class in a technique called SMOTE. The 

main goal is to generate new samples near the original minority in the feature space using an 

approach similar to the K-Nearest Neighbours technique, where K represents the number of new 

samples that are needed, such that for a 200% rise, K should be equal to two. 

The algorithm generates synthetic samples taking one instance into consideration and its nearest 

neighbour. Then, a new instance is created along the direction of the vector defined by this two 

instances multiplying the difference by a random number between 0 and 1, and then adding it to the 

sample. This causes the selection of a random point along the line segment between two specific 

instances". The authors proved that SMOTE works better than a simple under-sample of the 

majority class. They also concluded that accuracy is not a good metric for measuring the 

performance in an imbalanced data classifier, suggesting the use of the ROC curve and similar 

metrics. 

5.1.3.2 Methods based on modifying the classifiers 

These methods are based on modifications made to the classifiers using ensemble learning [57, 58] 

or based on the definition of specific loss functions [59]. 

An algorithm by Liu et al. [56] is based on the idea of building an ensemble classifier mixing it with 

an under-sampling approach. This is the Easy Ensemble algorithm, where given the set of the 

minority class samples (P) and the majority class (N), the under-sampling method randomly 

samples a subset N' from N, where |N0| < |Nj| and usually |Pj| = |N0|. For each subset, a classifier 

(H) is trained using the samples of that subset and all the samples in P. All generated classifiers are 

combined for the final decision. 

Galar et al. in [58] presented in their work some approaches to deal with the class imbalance using 

some classifier ensembles. They defined four families of ensemble methods based in the 

combination of classifiers making use of the boosting and bagging techniques and combining them 

with previous mentioned approaches of the training dataset. The conclusion was that “ensemble-

based algorithms are worthwhile, since they improve the results that are obtained by the usage of 
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data pre-processing techniques and training a single classifier. The use of more classifiers makes 

them more complex, but this growth is justified by the better results that can be assessed” [58]. 

There are other approaches for dealing with the class imbalance problem, García-Gómez and 

Tortajada in [59] propose a solution based on the empirical risk and the definition of specific loss 

functions instead of modifying the size of the training set. As in the previous mentioned literature, 

the authors state that the classic error measure for the classifier is inadequate for treating with 

imbalanced data and proposed to use two different error metrics that can be defined from the 

confusion matrix statistics: 

Balanced error rate (BER): this function takes into account the number of errors for each class 

giving the misclassification error for the minority class more importance than the error in the majority 

class. The function is defined as  

 

where n12 represents the false negative predictions, and n21 represents the false positive 

predictions, being thus an average of the false error rates of each class. 

Weighted Error Rate (WER): the WER function is also defined in terms of the error rate for each 

class, and generalizes BER giving the user the opportunity to define the contribution of each error 

rate to the global error. The function is defined as: 

 

where, in the end, the metric is giving a weighted average of the false error rates. 

García-Gómez and Tortajada [59] also demonstrate that the BER loss function define the empirical 

risk equivalent to the BER metric. Their experimentation concludes that LBER (BER loss function) 

based classifiers outperformed the classifiers based on the 0-1 loss function in all their experiments 

with real data. In addition, the training of classifiers based on this loss function with imbalanced 

datasets is equivalent to the training of those based on the 0-1 function when they are trained with 

balanced data. The same concept is generalized for the LWER loss function family. 

5.1.4 Controlling Over-fitting 

Over-fitting is when a model gets high accuracy when evaluated with the training dataset but low 

accuracy when evaluated on another dataset [60] (the test dataset). It is typically an indication that 

the classifier modelled the data to such a specific detail, it is unable to make generalisations of 

learned concepts to new, unseen, data [61]. Taking a very generic example, if the aim is to classify 

shapes like circles and squares, building a model that details the sizes, textures and colours of the 

examples in the training set may lead to being unable to classify a circle that’s slightly bigger or has 

a different shade of purple. Although the performance on the training data may be good, it may be 

very poor on test data. Therefore, it is an important issue that needs to be addressed before 

applying a trained classifier on real data. 
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Typically, a high number of observations (instances) in a data set will lead to training better models, 

while a high number of variables (features) may inhibit the success of the training process. The 

training complexity increases (impacting training times and, for some algorithms, chances of 

converging on local optima), as well as the chances of over-fitting. A highly complex model will have 

most of the information of it, but it also will have a lot of noise. So we will have to consider the 

dimensionality of data when addressing over-fitting.  

In addition to dimensionality, the structure of the data model can also have an impact on over-fitting, 

like multicollinearity of variables. Regularization of the model will be necessary in order to avoid this 

problem. Regularization imposes an upper threshold on the values taken by the coefficients, thereby 

producing a more parsimonious solution and a set of coefficients with smaller variance [62]. 

Therefore, controlling overfitting refers to the adjustment of the model to the training data without 

losing generalization.  

Using techniques of feature selection in order to reduce the dimensionality or doing regularization 

for the multicollinearity can help us in our overfitting problem. For doing a feature selection we can 

use minimum redundancy maximum relevance (mRMR), as discussed above in Section 5.1.1. For 

regularization we can use Principal Component Analysis (PCA) [63] or K-means [64] methods. 

There are specific classification approaches that may also help with over-fitting, such as ensemble 

learning algorithms, including Bagging, Boosting and Random Forests. We will discuss Random 

Forests further below in Section 5.2.3.  

In this context, we also mention validation methods, which should be considered carefully to give a 

reliable and realistic measure of training and test performance, and, thus, also of over-fitting. One 

approach is referred to as holdout validation, in which a data set is split into a training and a test set. 

This may be done based on randomly selecting samples from the data set, e.g., 80% of the samples 

for training and 20% for testing. The risk of this is that the test set is not sufficiently representative. 

For example, it may contain a different class balance or distribution for features. Another approach 

is cross-validation, in which the data set is divided into multiple folds of equal size, referred to as 𝑘-

fold cross-validation. All but one fold is used for training and testing is performed on the remaining 

fold. This is repeated for the number of folds and classifier performance metrics are calculated 

accordingly such as cross-validation error. A variant of cross-validation is referred to as leave-one-

out cross-validation, in which the number of folds (k) equals the size of the data set. However, this 

may be too computationally expensive in practice, depending on the choice of classifier and the size 

of the training data set. Therefore, a common number of folds is 10 [39, 65]. 

In summary, to reliably validate the performance of classifiers, validation methods such as 𝑘-fold 

cross-validation should be used. To address potential over-fitting, we have identified the following 

factors to consider: 

1. Feature selection, e.g., Minimum Redundancy Maximum Relevance (mRMR). 
2. Regularization, e.g., PCA or K-means. 
3. Choice of classifier, e.g., Random Forest. 
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5.2 Classifiers 

In this section, we discuss classifiers that are considered relevant for performing risk stratification. 

Most of these classifiers are supervised algorithms, but we also include semi-supervised algorithms 

in the latter sections below. 

 

 

5.2.1 Logistic Regression 

Logistic regression is a type of regression model used when the dependent variable is a categorical 

variable as opposed to numeric. We shall refer to the value of this categorical variable according to 

its instance as the classification of the instance. These regression models aim to find the probability 

of an instance having a particular classification. As we are considering a multi-class problem for risk 

stratification, the most suitable logistic regression approach is that of multinomial logistic regression, 

which constructs the probabilities that an instance has a specific classification for any number of 

possible classifications. The fundamental assumption of multinomial logistic regression is that the 

logarithm of each classification probability is directly proportional to a separate linear function of the 

instance values, where the constant of proportionality is equal for all probabilities. This constant can 

be found by requiring that the probabilities must sum to equal 1. The coefficients in the linear 

functions are often determined by the use of the maximum likelihood method. Once the model is 

specified, the probabilities are then used to determine a classifier: one computes the value of all the 

probabilities for each new instance and assigns the classification according to the largest 

probability. 

Regarding risk stratification, multinomial logistic regression is suitable to consider as a risk 

classification algorithm for the following reasons: 

¶ It supports multiple classes. 

¶ It only has as many parameters as the product of the number of classes and the number of 

features; hence overfitting is unlikely in larger datasets. 

¶ It can incorporate categorical features provided a suitable coding scheme for the feature is 

provided. 

¶ It is generally quite fast in training and testing, as the maximum likelihood method is used. 

5.2.2 Decision Trees 

Decision Trees (DTs) refers to the group of algorithms which construct decision models of data, i.e., 

the data is classified by a series of classification rules based on the features contained within the 

data. Nodes in DT represent features and edges the values they may take, ending in terminal (leaf) 

nodes representing discrete class labels. As such, DTs are white boxes: it is possible to analyse 

and visualise the models that are created. See a simple example below in Figure 6, showing how 

continuous and discrete features may be used to structure a tree leading to risk stratification class 

labels L (low), M (medium) and H (high). 
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Figure 6: A simple Decision Tree example. 

Let us outline the general procedure. First, one determines the variable which best classifies the 

data alone. This classification rule becomes the root node of the decision tree (like ‘age’ in the 

above illustration). If the variable is discrete, there will be a branch coming from the starting node (or 

root node) to a child node for each value of the variable. If the variable is continuous, then it is 

usually more productive to determine a split, i.e., a partition in the data according to some inequality; 

the branches and child nodes then represent whether this inequality is satisfied. Once the child 

nodes are determined, they can either correspond to an instance of the category variable (resulting 

in a terminating node) or split further depending on the rules enforced in the algorithm. The 

algorithms typically run until either some pre-defined rules for termination are satisfied (known as 

pre-pruning) or until the data has been completely classified. If it is the latter, often the model suffers 

from overfitting (especially if there is noise in the data), and the model is usually re-evaluated 

bottom up to remove the offending nodes (known as post-pruning). 

The algorithms primarily differ in how the nodes are selected for both discrete and continuous 

variables, and whether pre-pruning or post-pruning is used. It is beyond the scope here to delve into 

details of specific algorithms but we make a note of the C4.5 algorithm developed by [52], which is 

probably the most widely known DT learning algorithm. Further, there are also differing strategies 

for the selection of an effective DT; the so called ensemble methods construct many DTs and 

combine a selection of them. Random Forests is such a method, which will be discussed further 

below in Section 5.2.3. 

DTs are suitable for risk stratification for several reasons: they support both discrete and continuous 

variables; they support multiple classes; overfitting and bias towards majority classes can be 

addressed to some extent via pruning methods; and they are efficient with both training and testing. 

Additionally, DTs stand out from most machine learning techniques in that they are white boxes. As 

such, it is possible for a human to examine and interpret the model that is created, which can be 

very valuable, e.g., for gaining new insights into how and why certain features (risk factors) are 

used. 

Age

BMIGender

L M L H

< 50 >= 50

F M <= 21 >= 30

M

21 > BMI < 30
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5.2.3 Random Forests 

We have discussed some advantages of DTs above and noted that it is possible to create 

ensembles of DTs referred to as a Random Forest (RF). DTs usually require pruning, otherwise 

they face high computational complexity issues when searching for globally optimal tree, or high 

risks of overfitting when the size tree is not optimized [66]. As discussed above in Section 5.1.4, 

over-fitting can occur by the following type of errors: training errors (misclassification errors) or 

generalization/testing errors (probability of making mistakes to predict outputs from previously 

unseen observations) [67]. Therefore, taking into account the more over-fitted a model is, the larger 

the probability of error, controlling overfitting becomes essential to improve the performance of 

existing algorithms. 

Based on the relation between the variance and the expected generalization error of a model, 

ensemble methods emerge in an attempt to improve the accuracy of existing machine learning 

algorithms by means of a bias-variance trade-off: “…a sensible approach for reducing generalization 

error would therefore consist in driving down the prediction variance, provided the respective bias 

can be kept the same or not be increased too much…”. Specifically, ensemble methods based on 

randomization operate by “introducing perturbations into the learning procedure in order to produce 

several different models from a single learning set and then to combine the predictions of those 

models to form the prediction of the ensemble” [68]. Bootstrap Aggregation (or Bagging for short), 

for example, is a simple and very powerful ensemble method and RF is basically the trademark of a 

bagging (ensemble) method based on DTs.  

In more detail, in RFs, the classifications of independent DTs are combined by means of a majority 

vote strategy. That is, the class that the majority of DTs have classified an instance as is selected as 

the classification output from the RF. To ensure different DTs are trained, “randomization is present 

in two ways: (1) random sampling of data for bootstrap samples as it is done in bagging and (2) 

random selection of input features for generating individual base decision trees” [69]. 

Basically, the algorithm works following next steps [70]: 

- Bootstrap sampling: Starting from the original training set (composed of “p” samples) “k” 
learning sets Lk of “q” samples (always “q” ≤ “p”) are generated.  

o All Lk are created by uniform sampling with replacement from L, 
o Lk can, therefore, contain repeated elements and, 
o when q=p the proportion of uniqueness results Lk = 100 (1 - 1/e) ~ 63%. 

- Learning: A DT (CART [71] classifier) Ck is trained for each Lk set. 
- Aggregation: Predict the value of a new sample “s” by applying aggregation vote, that means 

the predicted value will be the majority vote among the K predictions (or votes) for each Ck. 

The key aspects of RF are basically that they have good predictive performance, especially for 

“small n, large p problems”, situations where the number of data points are smaller to the number of 

features [72]. On the other hand it is an algorithm that handles both continuous and categorical 

features and almost does not need input preparation: it is quite robust to outliers, noisy or 

imbalanced data. In addition, it comes with a good automatic and internal feature selection that 

compute the importance of the features, “It estimates the importance of variables used in the 

classification” [73, 74], studies that reflect how RF could be successfully applied to gene 
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classification and disease prediction respectively. Additional research on cheminformatics [75] 

endorse the performance of RF. 

Finally, although RF has strengths it also has several limitations such as the computation time. 

Kulkarni and Sinha [69] show how RFs can be time consuming in comparison with other individual 

classification algorithms and exposes how the effort to improve the performance mainly is related 

with the reduction of the base DTs. This suggest that for the majority of situations, this method is 

fast enough, but there can be some situations with high demand of real-time response in which a 

high size of the forest could negatively affect to the prediction time and, therefore, the use of 

alternative approaches could be necessary. However, for risk stratification, real-time processing is 

not necessary, so this is not a concern in this context. 

5.2.4 Support Vector Machines 

Support Vector Machines (SVMs) are a type of classification algorithm constructed by Corinna and 

Vapnik [76] which operates by constructing a hyperplane to separate two classes in the feature 

space. To define the optimal hyperplane, the SVM attempts to maximise what is called the margin 

that separates the data points associated with the respective classes. This is the space between the 

hyperplane and the data points (on either side of the hyperplane). 

In its simplest form, SVMs are non-probabilistic binary classifiers for linearly separable classes. 

However, there are methods for handling multiclass problems and different kernel functions can be 

used for non-linearly-separable data. We shall not go into details of the different kernel functions 

here, but note that the general principle of generating a hyperplane remains the same. 

While SVMs may generally have high predictive power, they do not have a straight-forward way to 

handle categorical or discrete variables. One way of handling a categorical variable with  

categories is to increase the dimension of the feature space by  and let the categories be 

represented by orthonormal vectors on the space. Further, SVMs are not inherently multi-class 

classifiers. However, any binary classifier can be converted for use in multi-class problems by 

constructing a classifier for each pair of classes, and combine all of the trained classifiers using a 

voting system. 

In the case of risk stratification, SVMs are suitable for the task for the following reasons: 

¶ It has a low number of parameters and invokes a regularisation term in the optimisation 

problem; hence overfitting is unlikely. 

¶ It can incorporate categorical features provided a suitable coding scheme for the feature is 

provided. 

¶ When coupled with the kernel trick, SVMs can tackle non-linear classification problems; it is 

expected that risk stratification is a non-linear problem. 

5.2.5 Naïve Bayes 

The Naïve Bayes classifier is constructed from a probabilistic model which employs conditional 

probabilities to classify new instances with the key assumption that features are conditionally 
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independent. The aim of Naïve Bayes is to construct the conditional probability of a classification, 

given the value of some new instance not used in the construction of the model. 

The assumption that features are conditionally independent allows the conditional probability of 

interest to be written as the product of conditional probabilities of each feature taking a specific 

value, given a specific classification. Hence, in order to specify the model, one needs to specify the 

conditional distribution of each feature given the classification, and hence an ansatz must be used 

depending on the variable type. 

For features that are categorical in nature, the multinomial distribution is used as the ansatz. For 

features that are numeric, two possibilities can occur: the Gaussian distribution can be used directly, 

or the feature can be discretised according to the maximisation of some measure and then the 

multinomial distribution is used. Once the ansatzes for the distributions are chosen, the 

corresponding parameters needed for their specification can be computed using methods such as 

the maximum likelihood method. Once these parameters are specified, the conditional probability of 

a classification given the value of a new instance can be determined for each potential classification. 

The classifier that is constructed from these probabilities is the following: compute each of these 

conditional probabilities and choose the classification which maximises the conditional probability. 

Conditional independence of variables is often a strong assumption; there are many examples of 

variables which have strong dependence. However, despite this fact, Naïve-Bayes is typically 

competitive in its performance as a classifier compared to other methods. It has also been shown 

that Naïve Bayes also works in the case that variable dependencies are similar [77]. 

The Naïve Bayes is suitable for the task of risk stratification due to several factors: 

¶ The ansatzes for the distributions has a large scope, meaning it can handle both categorical 

and continuous variables. 

¶ The probability distribution can directly take into account missing data indicators, allowing for 

the modelling of missing-not-at-random data. 

¶ If there is missing data and the data is missing-at-random, the computation of the conditional 

probabilities can ignore the missing data. 

¶ Training and testing times are very fast.  

5.2.6 Multi-Layer Perceptrons 

A Multi-Layer perceptron (MLP) is a type of Artificial Neural Network (ANN), consisting of at least 

three layers, meaning they have an input layer and an output layer and at least one hidden layer. 

See Figure 7, below, in which the nodes in the input layer corresponds to the features of the dataset 

and the output layer corresponds to the classes. Here, we only consider feed-forward MLPs, in 

which the connections between neurons are only from input nodes to hidden nodes to output nodes 

(i.e., from left to right if visualised like in Figure 7). In the following section, we will discuss a different 

type of ANN, allowing recursive connections. 
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Figure 7: An example three layer MLP. 

 

MLPs use nonlinear activation functions in all neurons and is by definition a deep network. Data 

from the input layer is feed into the rest of the network, where the weights are adjusted during 

training of the network. In the end, hidden layers are followed by an output one, from which the 

result is read. The training of weights is commonly done by a procedure called backpropagation, 

which is used to adjust weights to optimize the result function. 

MLPs are useful for their ability to solve problems stochastically, allowing quicker and less 

computational demanding approximate solutions for complex problems and also allowing escapes 

from local minima. The problem with MLPs might be that they need a lot of data to train on, but, 

given enough hidden layers and enough data, it has been shown by Cybenko’s theorem [78] that 

MLPs can approximate virtually any function to any desired accuracy. In other words, MLPs are 

universal approximators. However, these results are valid if, and only if, there is a sufficiently large 

number of training records available. If there is not enough data to train the neural network, the 

network will not be able to learn the required input–output relationship accurately. However, if we 

are presented with a small dataset, there are some tools which can help ANNs in providing 

meaningful results, such as an example shown in [79]. The problem with MLPs can arise when 

there is missing data. As shown in [80], it is sometimes better to completely remove the missing 

data from the network to achieve better results.  

MLPs and other ANNs have already been used in medical research for diagnosing and classifying 

disease, and in the development of medical decision support systems.  In [81] several machine 

learning algorithms, including MLP, were used to classify people into three different categories 

(healthy, neurological disease and arthritis) based only on presented gait analysis data. Several 

algorithms, including MLP, scored 100% accuracy at classification with only a short time for testing 

and training.  

In [82], MLP-based decision support system was shown to be able to achieve very high diagnosis 

accuracy (>90%) for heart diseases, proving its usefulness in support of clinic decision process of 
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heart diseases. Another usage of MLP on health data was demonstrated in [83] where an MLP was 

used to diagnose five major heart diseases. The input consisted of 38 input variables and the 

network achieved high accuracy in diagnosing these diseases. 

5.2.7 Recurrent Neural Networks 

Related to MLPs, we also consider Recurrent Neural Networks here. An RNN is any network whose 

neurons send feedback signals to each other, so the activations can flow round in a loop. That 

enables the networks to do temporal processing and learn sequences. The decision made by a 

RNN is based on its previous decision and the current input data. Thus, RNNs have two sources of 

input, the present and the recent past, which combine to determine how they respond to new data, 

much as we do in life. The RNNs are trained using the backpropagation-through-time algorithm, a 

variation of the classical backpropagation algorithm which summarizes the standard error function 

through the time. 

An established variation of RNNs is the “Long short-term memory RNN (LSTM)”, which can percept 

the error that is back-propagated through time. It continues to learn over many time steps and 

create channels to link causes and effects remotely. 

In particular, we note here that RNNs are promising within the context of CrowdHEALTH in 

performing information mining from measurements (e.g. from measurements taken from medical 

devices) before and after an event has occurred.  

5.2.8 Semi-Supervised Generative Methods 

Semi-supervised generative methods refer to the set of methods which aim to directly construct the 

conditional probability of an instance taking a particular value given its classification, using both 

labelled and unlabelled data. Generative models assume an ansatz for the conditional distributions 

for each classification and then aim to compute estimates of the distribution parameters. This is 

often performed using the maximum-likelihood approach, through the use of the EM algorithm [84] 

which takes into account the fact that labels are missing for the unlabelled data. 

Within this class of methods, one popular choice is Gaussian mixture models, which represent the 

conditional probabilities as weighted sums of multiple Gaussian distributions. Theoretically, such a 

representation is feasible as any distribution can be modelled sufficiently well with a sufficient 

number of mixture components [85]. This fact, combined with the simplicity of estimating Gaussian 

distribution parameters, makes Gaussian mixture models a popular approach. 

Once the conditional distributions have been estimated, one can compute the conditional 

distribution of a classification given a specific instance value. This can then be used for classification 

in the same way as the Naïve Bayes classifier: one can compute the conditional probability for each 

class and choose the classification which maximises the conditional probability. 

Semi-supervised generative methods are suitable for the risk stratification task in the following 

ways: 

¶ They can take advantage of additional unlabelled instances as a semi-supervised classifier. 
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¶ Training and testing can be fast, as one is computing a maximum likelihood fit using the EM 

algorithm. 

¶ They can intrinsically take into account both categorical and continuous variables, as an 

ansatz is required for each conditional distribution. 

5.2.9 Transductive Support Vector Machines 

Transductive Support Vector Machines (TSVMs) are a possible generalisation of SVMs including 

the use of unlabelled data [86, 87]. The TSVM optimisation problem can be stated as the following: 

find class labels for the unlabelled data that give the largest SVM margin. In practice, this problem is 

solved by adding a further regularisation term to the SVM optimisation problem which takes into 

account the margin violations of the unlabelled data. Here, a margin violation of an unlabelled 

instance is defined using the predicted class of the unlabelled instance. The classifier produced is 

then exactly the same as in the case of SVMs: the classification utilises the hyperplane found by the 

optimisation procedure. 

The first applications of TSVMs was to the text classification problem [86] and to several fully-

labelled real world datasets [87]. It was empirically shown that TSVMs outperform SVMs in all 

categories within the text classification problem, whereas TSVMs were shown not to perform 

significantly worse than their supervised counterparts on the real-world datasets. It has also been 

shown that the optimisation problem for finding TSVMs can be solved in similar time to SVMs, 

provided one has a sufficient solver (optimisation algorithm) [88]. 

TSVMs are heavily suited to the task of risk stratification due to the following: 

¶ TSVMs have all of the advantages associated with SVMs. 

¶ TSVMs can take advantage of additional unlabelled instances as a semi-supervised 

classifier. 

5.3 Summary 

The techniques that have been outlined in this section are all very well grounded within the state-of-

the-art regarding their applicability to real-world data. With regards to the techniques for data 

processing and addressing the training challenges outlined in Section 5.1, empirical studies must be 

performed in order to fully address these problems. Preliminary data analysis will guide the selection 

of suitable techniques, but empirical studies are required to determine which ones are the best for 

each specific problem (depending on the data). In these empirical studies, it is highly likely that we 

shall utilise 𝑘-fold cross-validation in order to assess the classifier performance on the type of data 

sets we aim to use. As for the remainder of the techniques, we will perform experiments on the 

various types of feature selection, techniques to handle class imbalance, and methods for missing 

data handling, and we shall utilise the classifier performance criteria for evaluation.  

The classifiers we have outlined in Section 5.2 are largely in line with the state-of-the-art, and are all 

inductive methods, i.e., the classifier stores a set of parameters based upon the training process, 

allowing the classifier to be utilised without the need for the training instances. In their application to 

the risk stratification process of Section 4, there are still some unknowns, and empirical studies will 

be required to determine which classifier shall be used. Consequently, we shall avoid specifying 
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which particular classifier will be used in the tool until these studies have been performed. However, 

as we have listed the practical advantages of its use on the heterogeneous data, we can make an 

argument for which classifiers we expect to perform the best. We expect that the semi-supervised 

methods: generative models and TSVMs will perform the best, due to the inclusion of more relevant 

data to the problem, as well as the scope of the feature types that they can handle. However, an 

important caveat for semi-supervised learning to work well is that one finds the correct assumption 

to make about the data [89], so this needs to be considered carefully in the planned empirical 

studies. Finally, by formulating the problem as a semi-supervised problem, this means that the 

application of semi-supervised classifiers to this type of data is largely beyond the state-of-the-art. 

As we indicated in Section 4.7, one of the performance criteria of a classifier is scalability. In order 

to determine scalability, we need to consider the length of time it will take to train and test each 

individual classifier. For the tool, the testing time is more important, as the training is conducted as 

an off-line process and, while risk stratification tools are not required to support real-time analysis, 

we need to ensure that the tools are able to produce results within an acceptable time-frame for 

potentially very large data sets. It is expected that these times will be dependent on the number of 

instances in the training set, in the testing set, and the number of features. Therefore, when 

performing the empirical studies centred on the classification training processes illustrated in 

Section 4.7, we shall aim to determine an empirically-derived relationship between the training and 

testing times, and these known dependences. Using this relationship, we may then extrapolate to 

unknown cases, such as the case where the data set is very large, in order to answer questions 

about practicality. Finally, given the review of the classifiers in Section 5.2, it is expected that SVMs 

and TSVMs will be amongst the longest to train, as the corresponding constrained optimisation 

problems are computationally difficult to solve; however, they should have fast testing times, given 

that one needs to apply hyperplane inequalities to new instances. 

6 Use Case Risk Analysis 

In this section we include several examples of potential applications of risk stratification to use 

cases in the CrowdHEALTH project. The information here is based on descriptions of data sets 

available at the time of writing [22, 23]; not the data itself which is due at a later date. Therefore, the 

nature of this section is high level, with a focus on ideas and potential opportunities that are seen in 

the respective use cases discussed here. 

6.1 Semi-supervised Learning for Obesity Identification 

Being overweight or obese are defined as having an abnormal or excessive fat accumulation that 

may impair health. Changes in diet and activity levels (sedentary lifestyles) are the main factors 

leading to obesity. Obesity is harmful to health, both by itself (shortening life expectancy), as well as 

being a risk factor for other chronic diseases. The increasing concern about the prevalence of 

obesity and being overweight is due to the association with the main chronic diseases of our time: 

cardiac diseases, stroke, diabetes mellitus type II, hypertension, and some types of cancer [90]. A 

higher BMI is correlated with higher levels of comorbidities and mortality due to such chronic 

diseases. In adults, obesity is also related with osteoarthritis and respiratory diseases [90]. 
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The health strategy on obesity in Europe in general [91] and in Spain in particular [92], focuses 

mainly on an early and systematic detection that should be included in the general examination of 

any patient, together with the advising and promotion of good nutrition habits and physical activities. 

Prevention should be carried out from childhood, promoting healthy living habits.  

Currently, diagnoses of being overweight or obese are commonly underestimated [93–96]. For 

instance, at the Health Department of La Fe in Valencia, the number of patients with an overweight 

or obesity diagnosis and currently are alive is 6,830, which represents approximately 2% of the 

capita of the Hospital (current capita is 298,975 citizens). This number shows how this condition is 

underdiagnosed if we consider that the Public Health Statistics state that around 50% of the 

population is overweight or obese. This fact could be reinforcing that, even if obesity factors are well 

known, the implemented public health policies seem to be ineffective. Thus, we have to understand 

which data are crucial to drive effective policies with a possible focus on risk stratification of obese 

and overweight patients. 

6.1.1 Risk Analysis - Opportunities for Policy Making 

One of the main goals of the public health strategy on obesity is the promotion of systematic 

detection of overweight and obesity, and specially the early detection of obesity. The 

aforementioned numbers show how this condition is under-diagnosed at Hospital La Fe. Hence, the 

main effort should be directed towards an early and systematic detection of overweight and obesity. 

This analysis aims at aiding the policy maker to detect or infer what citizens are not yet diagnosed 

but are very likely to be overweight or obese. The problem of under-diagnosing these conditions is 

not local to Hospital La Fe; it is a common worldwide problem, as shown in [93–96]. Hence, the 

main challenge in this context is the identification of patients who are overweight or obese, but have 

not been diagnosed as such. 

For instance, supervised machine learning algorithms do need a set of instances of the so-called 

positive class (people who are overweight or obese) and a set of instances of the so-called negative 

class (people who are not overweight or obese). Although we can identify a sample that includes 

2% of the positive class as the capita of the Hospital who has an ICD-9 code for overweight and 

obesity, it is very difficult to get a set for the negative class because there is a 48% of the capita that 

may be overweight or obese according to the public health statistics, though not diagnosed. 

Therefore, about one out of every two people that have not an ICD-9 code for obesity and that may 

be selected as part of the negative class set may be indeed be overweight or obese. 

A solution proposed is to apply a combination of semi-supervised classification techniques [89, 97], 

feature extraction techniques and manifold projections [98, 99] to obtain a characterization of the 

obese population. The projection of each obese person as a point in a latent sample space could be 

used to compare the projection of other people as points in the same latent space to infer whether 

they belong to the obese class with a given probability.  

In addition, since a person may change their weight in the course of time, the analysis may have to 

take into account time-windows of, for instance, 6 months. This could also be used to analyse the 

evolution of the distribution of the (obese) population during a period of time. The systematic 
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detection may be enhanced by using risk stratification methods that could help identify which 

segments of the population that require more intense health care attention.  

In the end, this approach could be useful for any Public Health authority that is able to manage 

information from citizens to guess who are in a stratum that warns of the risk of being overweight or 

obese. 

Other tasks that can be posed to be analysed, which are related with the aforementioned goal: 

1. Risk of obesity: the prediction of patients with a high risk of becoming obese may be useful 

to detect those patients before the condition appears in order to trigger preventive actions. 

The question can be extended to what segments of the population – children/adults/elder 

and/or by gender – with overweight have a low, medium, or high-risk of becoming obese. 

2. Chance of improvement: The predictions of patients who are obese or overweight that have 

a chance of becoming a citizen with a healthier weight. The goal is to stratify obese patients 

into groups with high/medium/low probability of improving their weight (i.e., losing weight). 

That is to detect what patients may be going in the right direction to trigger reinforcement 

actions.  

3. Risk of comorbidity: the prediction of patients with a high risk of developing any comorbidity 

having obesity as a risk factor, mainly cardiovascular diseases or diabetes. This could trigger 

preventive actions on a more clinical scale. 

Table 1, below, summarises the risk analysis problems related to their public health goal and the 

target variable. 

Table 1. Risk analysis problems of Use Case Overweight and Obesity Control 

Risk analysis Public Health Goal Target Variable Techniques 

(1) Identification of 
obesity 

Systematic detection of 
overweight and obesity 

Risk of overweight/obesity Semi-supervised 
learning, PU learning, 
EM algorithm, Feature 
extraction, Manifold 
projections 

(2) Risk of obesity  Systematic detection of 
overweight and obesity 

Risk of developing 
obesity: low, medium, or 
high risk 

Supervised learning, 
Neural networks, 
Bayesian classification, 
Support vector 
machines, Random 
forests 

(3) Chance of 
improvement 

Promotion of good 
nutrition and activity 
habits 

Chance of improving 
condition (as a probability) 

Supervised learning, 
Neural networks, 
Bayesian classification, 
Support vector 
machines, Random 
forests 

(4) Risk of comorbidity Related to other public 
health problems such 

Risk of developing a 
cardiac disease/ diabetes 

Supervised learning, 
Neural networks, 
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Risk analysis Public Health Goal Target Variable Techniques 

as cardiac (heart failure 
and myocardial 
infarction) and diabetic 
conditions 

mellitus type II: low, 
medium, or high risk. 

Bayesian classification, 
Support vector 
machines, Random 
forests 

6.1.2 Data Availability and Limitations 

The available data from the Information Systems of Hospital La Fe are divided into different 

datamarts that include the following domains: patient information, hospitalization episodes, 

emergency room episodes, hospital at home episodes, and morbidity. Additionally, there is partial 

information that can be used for outpatient consultations, laboratory results, and costs. 

Hospital La Fe is carrying out an effort to integrate data from primary care and it will be partly 

available by January 2018. This data will include new clinical and anthropometric variables. The 

primary care data will provide also the ability to identify more patients diagnosed with obesity. 

For the moment, the number of overweight or obese patients with a complete Electronic Health 

Record (EHR) and are currently alive is 6,830, which represent around 2% of the capita of the 

Hospital (current capita is 298,975 citizens). This is clearly an underdiagnosed condition since the 

public health analysis states that around 50% of the population has overweight or obesity. These 

patients have been identified using their ICD-9-CM codes for obesity and overweight (278.00, 

278.01, 278.02, 278.03). 

The 6,830 identified patients have a total of 10,836 hospitalization episodes, 43,202 emergency 

room visits, 2,254 hospital-at-home episodes, 742,434 laboratory tests results, 553,832 diagnostics, 

and 140,893 outpatient consultations.  

The available variables for the HULAFE data set are further detailed in Appendix A. 

One of the main limitations is that the physicians do not systematically record the weight and height 

of the patients, which limits the ability to diagnose the overweight and obesity conditions. Therefore, 

there is an under-diagnosis of people who are overweight or obese at Hospital La Fe. This is mainly 

due to the type of care given at the Hospital, which is secondary and tertiary care. Hence, the 

identification of people with overweight and obesity is clearly a problem of non-systematic detection 

of these conditions. This implies that we cannot ensure that a patient who is not diagnosed with 

obesity or being overweight has actually a good control of his/her weight. This is also a limitation 

when using data integrated from primary care, where weight is measured approximately in only 3% 

of the patients. 

Another limitation is the lack of information related to nutrition habits and physical activity habits that 

could have complemented the information of the patients’ Electronic Health Record. This is going to 

be evaluated in a Use Case Pilot Study in collaboration with DFKI. 
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6.2 Risk of Obesity Development and Remission 

In complement to the risk stratification work discussed above in Section 6.1, we focus here on the 

improvement of the detection of obesity by assessing the risk that patients who are overweight 

become obese.  

6.2.1 Risk Analysis - Opportunities for Policy Making 

We have identified three potential scenarios related to the development and remission of obesity: 

Scenario 1: Prediction of obesity.  

¶ Policy-level question: What proportion of the population, who are already overweight, are at 

risk of becoming obese? 

¶ Related questions:  

o Q1: Will this patient, who presents as being overweight, develop obesity? 

o Q2: What is the percent chance of obesity developing for a patient who presents as 

being overweight? Prediction score varied from x to y. After having the percentage 

the patient will be classified with low, medium or high risk. 

¶ Approach:  

o Key predictors affecting the progression from overweight to obesity and the remission 

from obesity to overweight. 

o Risk factors: being overweight, early childhood trauma, mental health disorders, 

coronary heart disease, atherosclerotic diseases, type 2 diabetes, and sleep apnoea 

¶ Required data: 

o Patients who are overweight but have not developed obesity. 

o Patients who are obese. 

o Patients who were obese, but have remitted to being overweight. 

Scenario 2: Risk factors of development or remission of obesity. 

¶ Policy-level question: What are the key risk factors that affect the development or remission 

of obesity? 

¶ Related questions:  

o Q3: What are the patient characteristics associated with a false negative?  

¶ Approach: 

o Analysing the factors that affect misclassifications. In particular with regards to true 

positives (correct identification) of the development of obesity (or remission) and 

false negatives (missing instances of obesity development/remission). Similar to the 

research of Rosso et al. [100]. 

¶ Required data: 

o Same as in scenario 1. 

o A validation dataset to test the prediction of early detection of obesity (the previous 

prediction). 

Scenario 3: Segments detection in the overweight or obese population.  
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¶ Policy-level question: What segments of the population are of greater risk of becoming 

obese? 

¶ Approach:  

o On the one hand, the intention is to determine the relation between different episodes 

of hospitalization, emergency room and outpatient consultations with the 

development of obesity. That means identifying what specific episodes of care can 

be related with the risk of developing obesity for patients who are already overweight. 

For instance, the continuously assistance to mental health services could have a 

relation with obesity. 

o On the other hand, if we are able to obtain the necessary data, a second goal is to 

determine the relation between other demographic (range of age) and habitual 

(lifestyle, diets) factors that can affect the transition from being overweight to 

becoming obese. 

¶ Required data: Same as in scenario 2. 

6.2.2 Classification Tools 

Prior to conducting an analysis of the data it is difficult to determine which techniques that should be 

used, as discussed previously. We do note here that some classifiers will be appropriate for the 

different questions identified above, due to the nature of the classification problem. For example: 

¶ Naïve Bayes may be useful in scenario 1, but only for binary classification (Q1). 

¶ Decision Trees can be used in the scenario 1, both for binary classification (Q1) and 
probability prediction (Q2):  “the leaf may hold a probability vector indicating the probability of 
the target attribute having a certain value” [101]. 

¶ Random Forests may provide improved performance on Decision Trees in scenario 1. 
 
We expect we will employ PCA and Factor Analysis as they are commonly used by data science to 
reduce the dimensionality of a set of data: “With minimal effort PCA provides a roadmap for how to 
reduce a complex data set to a lower dimension to reveal the sometimes hidden, simplified 
structures that often underlie it” [102]. These techniques may help reveal hidden structures between 
the features, which will help in scenario 2 and 3.  

6.3 Obesity and Physical Activity in Childhood 

Here we consider an opportunity for risk stratification grounded in the SLOfit use case in the 

CrowdHEALTH project, focusing on childhood obesity.  

6.3.1 Overview 

The SLOfit data contains records of annual systematic measurements of primary and secondary 

school children with 11 measurements, spanning all the way back to the school year 1981/82 [103]. 

These data is used to provide feedback on every child’s development and physical fitness (personal 

SLOfit chart) which includes raw data of all the measurements as well as standardised values which 

enable direct comparison of a child’s current status with previous data and with population data, as 

well as the evaluation of their health risks.  
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6.3.2 Risk Analysis - Opportunities for Policy Making 

Based on the data from the SLOfit case study we expect risk stratification (here, we mean general 

risks, such as risk of developing chronic conditions and mortality) to be used with the aim to enable 

policy makers to answer various questions related to policies on childhood obesity, diet and physical 

activity.  

Studies of the existing data unveiled that in 2015 children showed 6 % less aerobic endurance than 

in 1991, which had negative impact on their health and academic performance. In addition, children 

in 2015 were 6 % heavier and 1.3 % taller than their 1991 counterparts. Regarding Socio-Economic 

Status (SES), considerable differences were observed in nutritional and fitness status of students in 

different secondary-school programmes – grammar school students were taller, lighter, and had a 

better physical performance in several categories as compared to the students enrolled in 

vocational programs [103]. 

Regarding childhood obesity, the relevant questions are as follows: 

¶ Which groups of children are at greater risk for obesity based on their fitness, physical 

activity, sedentary behaviours, the place of residence, SES, age and gender? 

¶ What level of fitness is protective of future obesity? 

Regarding physical activity, we are interested in the following questions: 

¶ Which groups of children are at greater risk of low fitness based on their weight status, 

physical activity, sedentary behaviours, the place of residence, and SES? 

¶ How much physical activity is needed for maintaining an adequate level of physical fitness? 

¶ What is the ratio of physical activity and sedentary time that still results in adequate physical 

fitness? 

In the above questions we have examples of direct population-level risk-based questions and other 

relevant questions help target and shape policies, such as guidelines on activity levels for different 

age groups. 

6.3.3 Methodology 

Due to the nature of the data in the use case, we focus on the performances at the age of 18, when 

the children participate in the measurements for the last time. Based on a literature survey, the 

(extrapolated) values can be then used to asses potential risks in the adulthood. A detailed literature 

survey is currently underway.  

Our work plan encompasses the following indicators: 

¶ Obesity. The year-to-year BMI data will be extrapolated to the value at the age of 18. Here, 

special attention should be paid to the effects of the onset of puberty, which may start at 10-

11 in girls and about two years later in boys, with an accelerated growth rate. Childhood 

obesity is to be connected with onset of health problems in the adulthood. An important 

indicator here is also the triceps skinfold measurement, which is used for assessment for 

peripheral fat.   
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¶ Cardiorespiratory fitness. The relevant measurement here is the performance in a 600 m 

run, which can be used to calculate the VO2max value. We plan to use the data from 

children aged 11-14 and extrapolate the values to the age of 18, which is expected to remain 

similar in the adulthood, probably somewhat decreasing with age. Cardiorespiratory fitness 

is strongly related to possible development of chronic conditions in the adulthood.  

¶ Muscular fitness. The relevant measurements for this indicator are sit-ups and bent arm-

hang. Again, the year-to-year data are to be extrapolated to the values at the age of 18 and 

used to assess potential future risks. For example, in 2015 muscular strength of arms and 

shoulders was 12 % lower than in 1991, which influences poor posture and increases risks 

of spinal problems in adult life [103].  

In this research, it would be highly beneficial to also have access to the data of the parents such as 

their SES, however, these are currently unavailable. In the following months, we plan to obtain the 

data on the SES, sleeping patterns, general physical activities, etc., on a representative subset of 

children (2000-4000), where we will be also able to study regional variations.  

6.4 Risk of Heart Disease 

Cardiovascular (heart) disease is a significant topic on the policy agenda at both national and 

European level [19, 104–106]. In the UK’s national health strategy, for example, cardiovascular 

disease is explicitly listed as one of four major causes of death to focus on, along with respiratory 

disease, liver disease and cancer [104]. 

6.4.1 Overview 

The term “cardiovascular disease” encompasses several conditions affecting the heart or other 

parts of the circulatory system (blood vessels). Specific conditions of the heart (coronary heart 

disease) include, e.g., myocardial infarction (heart attack), angina and heart failure. Stroke and 

transient ischaemic attacks are cardiovascular conditions as they result from blood supply to the 

brain being affected. Specific conditions of the blood vessels include, e.g., peripheral arterial 

disease and aortic disease (which itself comprises several specific conditions). For the purposes of 

this deliverable, the following discussion will remain at a higher level, using heart attack in 

examples. The specific condition(s) that will be addressed in the project will be influenced by the 

data, which was not available at the time of writing. 

6.4.2 Risk Analysis - Opportunities for Policy Making 

There are several known risk factors for heart disease. For myocardial infarction, this is a 

combination of congenital (hereditary) factors and lifestyle factors. For policy purposes, it is the 

lifestyle factors that are of key interest, as this is something that could be addressed/influenced via 

policies. For example, risk factors include lack of physical activity, smoking and obesity [107–109]. 

Obesity itself has got risk factors that include lack of physical activity and unhealthy diet [110, 111]. 

As discussed above in Section 3, the European policy strategies are at a very high level. Therefore, 

we shall consider national strategies published in the UK here [104]. One of the key target areas are 

on the reduction of premature mortality from the major causes of death, which includes 



D5.3 Data-driven Analytics for Risk 
Stratification: Design and Open Specification 

06/11/2017 

 

 

 

Page: 55 

cardiovascular disease. As cardiovascular disease is a broad category of diseases, we are likely to 

focus on a specific condition in CrowdHEALTH. Example policy questions we can explore include: 

“What proportion of the population is at risk of myocardial infarction?” 

“What segments of the population are at greater risk of myocardial infarction?” 

The first question is aligned with overarching indicators such as life expectancy at 75, which could 

be calculated based on the proportion of the population deemed at high risk of myocardial infarction, 

combined with mortality rates associated with that condition. 

The second question helps policy makers focus their policies, e.g., by showing risks according to 

age groups. The indicator about life expectancy at 75 is applicable in this context as well, and we 

note that the NHS strategy is interested in gender segments (male and female). Further, the 

strategy in the UK is also particularly concerned with mortality in children and people with particular 

conditions such as mental illness and learning disabilities. 

6.4.3 Data Availability 

Two use cases in CrowdHEALTH provide an opportunity to address risks pertaining to 

cardiovascular disease and the link with obesity: KI (SwedeHeart) and HULAFE (obesity). These 

use cases are expected to provide data by the end of 2017, after this report was written. Hence, the 

content here is based on high level descriptions and data schemas where available. 

The SwedeHeart data set is expected to provide us with data from approximately 2 million patients. 

This size gives a good opportunity to perform a population-based risk stratification of cardiovascular 

disease. The data set contains patient information such as gender and age, allowing us to provide 

risk stratification on the basis of key segments discussed above. Further, the data set includes 

information about the diagnosis of many types of heart conditions, heart surgeries undertaken, post-

operation data and follow-up data including that from physiotherapy. In terms of known risk factors 

for heart attacks, this data set does include relevant lifestyle information such as whether people 

smoke, and what their weight is. 

The HULAFE data has been discussed in Section 6.1, and we note the potential relevance here as 

obesity is a risk factor for heart disease. However, it is unclear at the time of writing whether it is 

feasible or even necessary to use this data set for risk stratification of cardiovascular disease, given 

the richness data provided in the SwedeHeart data set. Nevertheless, it is an opportunity that will be 

investigated when data becomes available in the project. 

6.4.4 Classification Tools 

The choice of classification tools will depend on data analysis that will take place once data is 

available. At the time of writing, we expect there will be a need for semi-supervised learning, in line 

with the temporal risk labelling discussed above in Section 4.2. As discussed above in Section 5.2, 

Transductive SVMs are a good option, for example. 
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6.5 Risk of Psychological Deterioration 

Psychological burden, including for example anxiety and depression, often comorbidly occur with 

chronic diseases, such as diabetes, chronic cardiovascular diseases, cancer, chronic obstructive 

pulmonary disease (COPD), etc. This psychological burden demonstrates high prevalence, and 

comprises one of the leading causes of disease burden worldwide.  

6.5.1 Overview 

Anxiety and depression comprising the main appearances of the psychological burden produce the 

greatest decrement in health compared with the chronic diseases angina, arthritis, asthma, and 

diabetes. Approximately 340 million people worldwide suffer from depression or anxiety at any given 

time[112]. According to the World Health Organization (WHO), psychological deterioration is 

responsible for the greatest proportion of burden associated with non-fatal health outcomes [113].  

6.5.2 Risk Analysis - Opportunities for Policy Making 

Psychological deterioration comes to further complicate the lives of obese people and/or people with 

chronic diseases including diabetes and COPD, and put additional strain on their wellbeing. Obesity, 

diabetes or chronic cardiovascular diseases on the one hand, and anxiety and depression or other 

psychological burdens frequently co-occur, and each presents a risk for the development of the 

other [114]. Adding behavioural therapy to lifestyle intervention results in greater psychological 

deterioration remission, and psychological improvement is associated with greater weight loss [115]. 

On top of that, classical studies in different medical and psychiatric settings have documented a 

high prevalence of psychological burden in diabetic patients, with significant impact on psychosocial 

as well as medical outcomes [116]. 

Many case studies in CrowdHEALTH provide an opportunity to address risks pertaining to 

psychological burden and psychological deterioration, especially in conjunction with chronic 

diseases (BIO, CRA) and obesity (HULAFE). Under this prism, risk assessment will revolve around 

the following key policy-level question: 

“What proportion of the population is at risk of anxiety, depression or other self-reported 

psychological burdens?” 

To address this question, we need to develop a tool that can identify patients that may already 

suffer from psychological conditions such as anxiety or depression, but have yet to be diagnosed. 

As a clinical tool, this may also be useful in early-detection to trigger preventative actions. Further, 

this work can feed into related work, such as exploring questions around mechanisms for 

addressing the risks, e.g., what the impact of online coaching may be. 

6.5.3 Data Availability 

The CRA use case seems to be able to provide an opportunity to address risks pertaining to 

psychological burden and the link with cancer as the major chronic disease. However, note that this 

use case is expected to provide data by the end of October 2017, and thus the current approach is 

based upon the snapshot of the data that has been made available, and not the actual data. As 

such, there is a risk that the data that will eventually be made available is not statistically significant 
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(e.g., not sufficient data) so as to allow the proposed research. Nevertheless, since anxiety can be 

self-reported, it may be facilitated that current data structures of care providers are expanded to also 

include this information, especially in the case of BIO where a closer relationship with individuals 

can be established. Nevertheless, the feasibility of this case will be evaluated in the near future. 

6.5.4 Classification Tools 

The exact classification tools that will be exploited for the conduction of the psychological 

deterioration risk modelling will be evaluated once the data is made available to the technical 

partners in CrowdHEALTH. Nevertheless, K-nearest neighbours, decision trees, random forests and 

multinomial linear regression seem to be appropriate candidates to undertake the regression and 

classification tasks required for the specific case. 

7 Conclusions and Further Work 

In this deliverable, we have proposed a process for creating data-driven tools for population-level 

risk stratification. This process has been developed based on well-known data mining 

methodologies, tailored to challenges of healthcare data. In particular, the process addresses the 

temporal nature of the problem, in which risk of a medical condition varies with time, depending on 

data that is gathered about symptoms and investigations performed. 

Temporal risk labelling is non-trivial, which has been given substantial attention in this deliverable, 

and we have identified a need for semi-supervised machine learning techniques in addition to the 

better-known supervised machine learning techniques used for classification purposes.  

Further, we make an explicit distinction between the types of missing data we may be presented 

with, and how we may handle this. For example, some data may be missing at random and known 

methods for imputing such missing data may be employed. However, we may have data missing not 

at random, e.g., due to some people not having had certain tests done. In such cases, it would be 

inappropriate to impute values. 

The risk stratification process will be implemented by different partners in the CrowdHEALTH 

project, developing specific tools for conditions grounded in the project use cases. We have 

discussed some opportunities in this deliverable, but note that this is preliminary and the specific 

conditions that will be addressed will be more clear once data is available.  

The aims of this work is to help inform policy makers of what the population-level health risks are, 

which may influence priorities in exiting policies or identify needs for new policies. Further, to 

determine which segments of the population are at greater risk, so as to help targeting policies and 

optimising management of care. Given the data-driven approach, the risk stratification also has the 

opportunity to identify new risk factors. 
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Appendix A HULAFE Dataset 

The available variables are shown below in Figure 8. This Figure shows the relationships among the 

different datamarts as well as the available variables, and their data type, from each datamart. This 

Figure does not show the integration of the primary care data. The primary care data will be 

integrated by January 2018 with more reliable information about anthropometric measures, which 

will enable the identification of more overweight and obesity patients, together with more information 

about medication and use of health resources. 
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Figure 8. Relationships among the different datamarts and the available variables for the Use Case 

Overweight and Obesity Control. 

 


