

This project has received funding from the European Union’s Horizon 2020 Programme
(H2020-SC1-2016-CNECT) under Grant Agreement No. 727560

Collective Wisdom Driving Public Health Policies

D4.10 Generating and Analysing

Knowledge Framework: Software Prototype

I

 Project Deliverable

D4.10 Generating and Analysing
Knowledge Framework: Software
Prototype I

10/01/2018

2/10

D4.10 Generating and Analysing Knowledge Framework: Software Prototype I

Work Package: WP4

Due Date: 31/12/2017

Submission Date: 10/01/2018

Start Date of Project: 01/03/2017

Duration of Project: 36 Months

Partner Responsible of Deliverable: ICE

Version: 1.1

Status:

 Final Draft Ready for internal Review

 Task Leader Accepted WP leader accepted

 Project Coordinator accepted

Author name(s): Usman Wajid Pavlos Kranas

Reviewer(s): Dimosthenis Kyriazis Salvador Tortajada Velert

Nature: R – Report D – Demonstrator

Dissemination level:

 PU – Public

 CO – Confidential

 RE – Restricted

REVISION HISTORY

Version Date Author(s) Changes made

0.1 21/12/2017 Usman Wajid Document structure and initial content

0.2 28/12/2017 Pavlos Kranas Input regarding the interface and
implementation between the Aggregator and
the Data Repository

1.0 28/12/2017 Usman Wajid Executive summary and overall alignment of
sections

1.1 10/01/2018 ATOS Quality Check. Submission to EC.

D4.10 Generating and Analysing
Knowledge Framework: Software
Prototype I

10/01/2018

3/10

Acronyms

API Application Programming Interface.

CI Continuous Integration.

DB Database.

FHIR Fast Healthcare Interoperability Resources.

JAR Java Archive.

MVC Model-view-controller.

REST Representational State Transfer.

WAR Web Archive.

XML Extensible Markup Language.

D4.10 Generating and Analysing
Knowledge Framework: Software
Prototype I

10/01/2018

4/10

Contents

1. Executive Summary ... 5

2. Prototype overview ... 6

2.1. Main components of the prototype .. 6

2.1.1. Data Aggregation ... 6

2.1.2. Data Importer ... 6

2.2. Interfaces .. 6

2.2.1. Data Aggregation ... 6

2.2.2. Data Importer ... 6

2.3. Baseline technologies and tools .. 8

2.3.1. Baseline technologies and tools for Data Converter ... 8

2.3.2. Baseline technologies and tools for Data Importer ... 8

3. Source code ... 9

3.1. Availability ... 9

3.2. Exploitation ... 9

4. Appendix .. 10

D4.10 Generating and Analysing
Knowledge Framework: Software
Prototype I

10/01/2018

5/10

1. Executive Summary

This document describes the first prototype of the Data Aggregation component. This

component is the outcome of Task 4.2 of CrowdHEALTH project. The first prototype of the

Data Aggregation component is composed of two sub-components (a) Data Aggregation, and

(b) Data Importer. The Data Aggregation sub-component is responsible for receiving the data

from other components in the CrowdHEALTH platform, whereas the Data Importer component

is responsible for importing the data within the big data platform.

This document provides an overview of the implemented functionality and vital information

about the interfaces of Data Aggregation with other components. The document also

describes how to access the source code and exploit the prototype. Finally, it highlights the

baseline technologies underpinning the prototype.

The first prototype of the Data Aggregation component completes the flow of health data from

its source to the big-data store within CrowdHEALTH platform, from where it will be used for

analytics and decision support. Two more iterations of the delivered prototype are planned in

the lifetime of the CrowdHEALTH project. The future prototypes will refine and enhance

existing functionality with the view to provide a scalable and reliable aggregation solution for

health data from heterogeneous sources.

D4.10 Generating and Analysing
Knowledge Framework: Software
Prototype I

10/01/2018

6/10

2. Prototype overview

2.1. Main components of the prototype

2.1.1. Data Aggregation

The first prototype of the Data Aggregation component is delivered as a Maven Project. The

project called ‘Aggregator’ implements a Data Aggregation service capable of receiving FHIR

data and passing it through to the Big Data Platform for insertion and aggregation.

2.1.2. Data Importer

This component receives data coming from the data aggregator, in a HAPI-FHIR compatible

format, and upserts (inserts or updates) them in the CrowdHEALTH data repository. It firstly

verifies if the corresponding database schema is already defined in the data store, and if not, it

creates it. Then, it is used by the data aggregator to push data to the repository. It translates

the input data to the underlying schema, by creating the corresponding java objects, and

makes use of its internal database accessibility methods to store and update data. It

encapsulates all the process underneath, with the respect to the software principle of

separation of concerns. By doing so, it allows the data aggregator to simply implement the

business logic of collecting/aggregating/transforming data as needed, while the data importer

implements the necessary mechanisms to store the data in a format that will further allow their

ease exploitation by the CrowdHEALTH tools for analytical processing.

The first prototype of the Data Importer is implemented in Java as a Maven project, thus

providing its binaries as a Maven Artifact. The data aggregation can make use of it, by simply

adding to its classpath.

2.2. Interfaces

2.2.1. Data Aggregation

An instance of the Aggregator is currently hosted as a REST service with the following

interface: icemain.hopto.org:7031/api/aggregate. Other components can use the specified

interface/endpoint to send data for aggregation.

2.2.2. Data Importer

As already mentioned, the Data Importer is implemented using Maven, thus is packaged into a

Java Archive (jar) that can be used or integrated with the Data Aggregation subcomponent by

adding the jar file into the project’s classpath, or adding the corresponding maven dependency

D4.10 Generating and Analysing
Knowledge Framework: Software
Prototype I

10/01/2018

7/10

to Data Aggregation’s pom.xml configuration file. For the first prototype, the maven

dependency that needs to be added is the following:

<dependency>

 <groupId>eu.crowdhealth</groupId>

 <artifactId>data.importer</artifactId>

 <version>0.1-SNAPSHOT</version>

</dependency>

The Data Importer provides a simple way to store a list of CrowdHEALTH data items, in a

HAPI-FHIR compatible format, to the internal data store. It provides a singleton instantiation of

the eu.crowdhealth.importer.utils.DataImporter class that exposes corresponding methods that

allows the upsertion of data. This API signature of this class is the following:

 public static DataImporter getInstance(): A static method that returns the singleton

instantiation of the class. It checks if the class has already been created, and if not, it

initializes the object, while taking care of all the actions that need to have been

completed beforehand (i.e loads the driver for the data store, ensures the DB schema

is defined in the data store, etc). If an instance of this class had already been initiated

before the invocation of this method, it will always return a reference to that object. It

ensures concurrency semantics and thus, it is thread-safe.

 public int upsertPatients(String patientXml) throws ImporterException: It receives a

serialized list of objects that holds patient information and store them to the data

repository. It returns the number of records that were affected (either newly inserted or

updated). If a specific item in the list of object fails to be added, it will continue to the

next items, and will log the error, so it will not break the insertion flow. However, It can

throw an ImporterException in case of a major failure (i.e input String was not in a valid

format, could not establish connection with the data store, etc). A sample input String

can be found in the appendix of this document.

 public int upsertSideEffects(String sideEffectsXml) throws ImporterException. As

above, with the difference that the list of objects holds information regarding side

effects of disease. It additionally verifies if the corresponding disease is already

imported in the data repository, and if not, it firstly adds it. It takes care establishing the

necessary dependencies regarding foreign keys of the involved entities. If a patient

that refers to a disease has not been already added to the repository, it will ignore the

specific item of the list, will log an error, and will continue to the next item. A sample

input String can be found in the appendix of this document.

 public int upsertComorbidities(String comorbiditiesXml) throws ImporterException: As

above, regarding comorbidity information. A sample input String can be found in the

appendix of this document.

 public int upsertDisgs(String disgsXml) throws ImporterException. As above, with a

sample input string that can be found in the appendix of this document.

D4.10 Generating and Analysing
Knowledge Framework: Software
Prototype I

10/01/2018

8/10

2.3. Baseline technologies and tools

2.3.1. Baseline technologies and tools for Data Converter

The following baseline technologies and tools are used by the first prototype of the Data

Aggregation sub-component.

 FHIR HAPI Server is an open-source implementation of the FHIR specification in

Java. HAPI provides a built-in mechanism for adding FHIR's RESTful Server

capabilities to the Aggregator. The HAPI RESTful Server is Servlet based, so it makes

it easy to deploy to any of the many compliant containers that exist e.g. Docker.

 Spring Framework is an application framework and inversion of control container for

the Java platform. The framework's core features can be used by any Java application,

but there are extensions for building web applications on top of the Java

EE (Enterprise Edition) platform. The Aggregator service uses the Spring Web model-

view-controller (MVC) framework to dispatch requests to handlers that use

configurable handler mappings to forward the data to the Big Data Platform for

aggregation.

 Docker is an open source project that allows the deployment of applications or

services inside containers, adding a layer of abstraction. CI, Version Control,

Portability, Isolation and Security. Containers are virtual machines running an

operating system and environment of the developers choice, working this way allows

for continuous integration and version control with the ability to quickly deploy and roll

back versions, portability as docker is widely available on a number of host operating

systems, the ability to isolate sub-components within their own containers leading to

well defined interfaces and also enhancing system security. These feature allow a

stable deployment environment for the Aggregator service.

2.3.2. Baseline technologies and tools for Data Importer

The following baseline technologies used by the first prototype of the Data Importer sub-

component.

 FHIR HAPI Structures contains the definition of the data model used by FHIR HAPI

compliant components. This will allow the interaction with the data aggregator which

sends objects transformed in this format.

 LeanXcale Elastic Driver is the software tool that allows data access with the data

repository.

https://en.wikipedia.org/wiki/Application_framework
https://en.wikipedia.org/wiki/Inversion_of_control
https://en.wikipedia.org/wiki/Servlet_container
https://en.wikipedia.org/wiki/Java_platform
https://en.wikipedia.org/wiki/Java_EE
https://en.wikipedia.org/wiki/Java_EE

D4.10 Generating and Analysing
Knowledge Framework: Software
Prototype I

10/01/2018

9/10

3. Source code

3.1. Availability

The source code of the Data Aggregation component delivered through the Aggregator

project, available under the following CrowdHEALTH GIT repository:

 Aggregator: http://crowdhealthtasks.ddns.net/CrowdHEALTH/Aggregator/

 Importer: https://crowdhealthtasks.ddns.net/CrowdHEALTH/DataImporter

3.2. Exploitation

The Aggregator is currently deployed on partner resources and can be access through the

specified address.

 Aggregation Service: The source code of the Aggregator is available at the master

branch of the CrowdHEALTH GIT, under the Aggregation project repository. It is

structure like follows:

 pom.xml file: descriptor of the Maven project.

 Readme.md file: Instructions on how to clone the project from GIT, run it on local

and on Docker.

 src/ folder: split in 2 subfolders
o main/ folder: contains all the source code of the Aggregator, including Java

classes, properties files and service descriptors used by the Spring Web
MVC.

o test/ folder: contains all the Unit Testing classes, properties files, example
files of FHIR inputs to be aggregated.

 *.sh scripts: Set of scripts to run, build and publish the service
o common.sh script: stores basic data like the name of the Docker

repository, image name, container name and version.
o docker-build.sh script: performs a ‘Docker build’ operation to compile the

source code, package it as a WAR and construct the Docker image.
o docker-run.sh script: performs a ‘Docker run’ that creates a Docker

container that harbours the Aggregator service and exposes the 8080 port
of an internal Tomcat to 7031 (defined in commons.sh).

The Data Importer is not intended to be used independently, as a separate service endpoint,

instead, it is packaged as a Java Archive to be used by the Data Aggregator. The source code

is available at the master branch of the CrowdHEALTH GIT, under the Data Importer

repository, and is structured as a maven project.

http://crowdhealthtasks.ddns.net/CrowdHEALTH/Aggregator/
https://crowdhealthtasks.ddns.net/CrowdHEALTH/DataImporter

D4.10 Generating and Analysing
Knowledge Framework: Software
Prototype I

10/01/2018

10/10

4. Appendix

The patientXML sample input (used for test insertion in the datastore):
<Bundle xmlns="http://hl7.org/fhir">
 <entry>
 <resource>
 <Patient xmlns="http://hl7.org/fhir">
 <extension url="http://hl7.org/fhir/StructureDefinition/identifier-validDate">
 <valueTime value="Sat Apr 01 12:55:00 UTC 2017"/>
 </extension>
 <identifier>
 <system value="https://www.careacross.com/"/>
 <value value="1"/>
 </identifier>
 <telecom>
 <system value="email"/>
 <value value="testemail@gmail.com"/>
 </telecom>
 </Patient>
 </resource>
 </entry>
 </Bundle>

The side effects, comorbidities and disg sample input:
<Bundle xmlns="http://hl7.org/fhir">
 <entry>
 <resource>
 <Condition xmlns="http://hl7.org/fhir">
 <code>
 <coding>
 <system value="http://hl7.org/fhir/sid/icd-9-cm"/>
 <code value="780.71"/>
 <display value="Chronic fatigue syndrome"/>
 </coding>
 </code>
 <subject>
 <identifier>
 <system value="https://www.careacross.com/"/>
 <value value="1"/>
 </identifier>
 </subject>
 </Condition>
 </resource>
 </entry>
 </Bundle>

