

This project has received funding from the European Union’s Horizon 2020 Programme
(H2020-SC1-2016-CNECT) under Grant Agreement No. 727560

Collective Wisdom Driving Public Health Policies

D3.3 Health Record Structure: Software

prototype v1

 Project Deliverable

D3.3 Health Record Structure: Software
prototype v1

19/01/2018

2/20

D3.3 Health Record Structure: Software prototype v1

Work Package: WP3

Due Date: 31/12/2017

Submission Date: 19/01/2018

Start Date of Project: 01/03/2017

Duration of Project: 36 Months

Partner Responsible of Deliverable: ENG

Version: 1.1

Status:

 Final Draft Ready for internal Review

 Task Leader Accepted WP leader accepted

 Project Coordinator accepted

Author name(s):

Francesco Torelli, Antonio De Nigro, Domenico Martino (ENG),

Maroje Sorić, Bojan Leskošek (ULJ), Jan Janssen, Serge Autexier

(DFKI), Santiago Aso (ATOS), Thanos Kiourtis (UPRC)

Reviewer(s): Andreas Menychtas(BIO) Sokratis Nifakos (KI)

Nature: R – Report D – Demonstrator

Dissemination level:

 PU – Public

 CO – Confidential

 RE – Restricted

REVISION HISTORY

Version Date Author(s) Changes made

0.1 28/11/2017 ENG First draft – Index, Holistic Health Record
Manager, HHR mapping syntax

0.2 19/12/2017 ENG, ULJ, DFKI,
ATOS, UPRC

Updated index, updated Holistic Health
Record Manager section, renamed section
from “HHR mapping syntax” to “HHR to FHIR
mapping”, updated HHR to FHIR mapping
section, edited HHR to FHIR mapping
example, executive summary, source code
section, references

1.0 31/12/2017 ENG Fixed internal review remarks.

1.1 19/01/2018 ATOS Quality Review. Submission to EC.

D3.3 Health Record Structure: Software
prototype v1

19/01/2018

3/20

List of acronyms

FHIR Fast Healthcare Interoperability Resource Specification

HHR Holistic Health Record

UML Unified Modeling Language

XML Extensible Markup Language

D3.3 Health Record Structure: Software
prototype v1

19/01/2018

4/20

Contents

1. Executive Summary ... 5

2. Prototype overview ... 6

2.1. Holistic Health Record Manager .. 6

2.2. HHR to FHIR mapping .. 9

2.3. HHR to FHIR mapping example .. 16

3. Source code ... 20

3.1. Availability ... 20

3.2. Usage ... 20

List of figures

Figure 1 Usage of HHR Manager in the CrowdHEALTH platform .. 6

Figure 2 Class HHRFactory ... 6

Figure 3 Specification of class Person ... 8

D3.3 Health Record Structure: Software
prototype v1

19/01/2018

5/20

1. Executive Summary

This document describes the first implementation of the Holistic Health Record (HHR) Model

and related specifications. The implementation consists of two components: a Java library and

a machine-interpretable mapping from the HHR model to the FHIR1 model.

The Java library, called HHR Manager, allows to instantiate and modify in-memory Java

objects that are compliant to the HHR conceptual model (see deliverable D3.1). In order to

produce it, the HHR model has been first formalized using a language called “HHR mapping

language”. This is an XML language, specifically designed for the HHR model, that allows to

specify in a machine-interpretable way the structure of HHR types and map them to the

structure of corresponding FHIR resources. The HHR mapping language is basically a

declarative language for defining and mapping document oriented (i.e. tree-like) data

structures and exploits the FHIRPath language 2 to navigate such structures. The HHR

mapping language can be considered an alternative to the FHIR mapping language3, that is

currently being specified as part of the FHIR standard. The FHIR mapping language is an

imperative language and arguably more powerful than the “HHR mapping language”, but often

produces complex descriptions. Instead the “HHR mapping language” is intended to be more

lightweight.

The machine-interpretable mapping document, expressed with the “HHR mapping language”,

represents a formalization of the HHR model that deliverable D3.1 presents in an informal

way.

The code of the HHR Manager has been partially produced in an automatic way, by exploiting

the formal specification of the HHR model, and the rest has been produce in a manual way.

The same formal specification will be used at runtime by the “DataConverter” component to

convert HHR objects to FHIR resources (see deliverable D3.9).

In summary, the following process has been followed: (1) the “HHR mapping language” has

been specified; (2) the formal specification of the HHR model has been authored using this

language; (3) the HHR Manager has been implemented; (4) the formal specification has been

completed by adding the mapping to FHIR.

The rest of this document is organized in two chapters. The first chapter describes the HHR

Manager and the HHR mapping language. The second chapter describes how to download

and use the HHR Manager and the machine-interpretable mapping to FHIR.

1
 https://www.hl7.org/fhir/

2
 http://hl7.org/fhirpath/

3
 https://www.hl7.org/fhir/mapping-language.html

https://www.hl7.org/fhir/
http://hl7.org/fhirpath/

D3.3 Health Record Structure: Software
prototype v1

19/01/2018

6/20

2. Prototype overview

2.1. Holistic Health Record Manager

In this section we describe the Holistic Health Record Manager (HHR Manager) and its

functions. The HHR Manager is a Java library that implements the HHR model. In the

CrowdHEALTH platform, the HHR Manager component may be used by the Data Converter

component, as shown in Figure 1.

Figure 1 Usage of HHR Manager in the CrowdHEALTH platform

The library contains two packages: eu.crowdhealth.hhr.model and eu.crowdhealth.hhr.impl

(simply called model and impl in the following). The first package defines the HHR Manager

API (IHHRManager in the above picture), i.e. a set of public Java interfaces and enumerations

corresponding to the conceptual types defined by the HHR conceptual model, as reported in

the deliverable D3.1. The second package implements the API.

Each leaf class of the HHR conceptual model having the stereotype <enum> corresponds to a

homonymous Java enumeration defined in the model package. Some enumeration inherits

from the parametric interface HHRType<T>. Any instance of HHRType<T> represents the

reification of a subclass of T. For instance, the enumeration ProcedureType implements

HHRType<Procedure>, i.e. each instance of ProcedureType represents a different type of

Procedure.

Any non-leaf class (including classes with whatever stereotype) of the HHR conceptual model

corresponds to a homonymous Java interface within the model package. All interfaces inherit

from the top interface called HHR.

The impl package provides only one public class, named “HHRFactory”, that allows the

creation of Java objects implementing the model interfaces (any other implementation class is

private to the package and cannot be directly instantiated).

Figure 2 Class HHRFactory

D3.3 Health Record Structure: Software
prototype v1

19/01/2018

7/20

The class HHRFactory offers three “create” methods, that return a new instance of the HHR

type specified as input. The type to instantiate may be specified by passing to the create

method the descriptor of a model interface (e.g. Patient.class), or by passing an HHRType

value (e.g. ClinicalFinding.ANEMIA) or by passing directly the name (as String) of a

conceptual type (e.g. “Patient” or “ANEMIA”). The first two methods are generic methods

which return type corresponds exactly to the type specified by the input, while the third method

has the interface HHR as return type. Therefore, while the first method allows to write safe

code and is useful when the type to instantiate is statically known or determined by generic

methods, the second method has to be used when no information on the type to instantiate is

statically known.

HHR conceptual classes having the special attribute called “type” can be only instantiated

using the create method accepting an HHRType as input. Differently by other attributes, the

value of the “type” attribute cannot be changed after the creation of the instance, because it is

not allowed to change the type of any created object, regardless if such a type is expressed

just by the interface of the object or by the “type” attribute. An exception is raised if a client

tries to instantiate an object having the “type” attribute using an interface instead than an

HHRType.

Following the JavaBeans pattern, each attribute of a HHR conceptual type is represented as a

Java “property”, i.e. a couple of “set and get methods. While in the HHR conceptual model all

attributes have a singular name, when an attribute has a maximum cardinality greater than

one the corresponding Java properties have a plural name and the corresponding methods

has a collection of entities as input/output return types. Such properties are called multiple

values properties. Note that the input/output collection of the get/set methods is not the value

of the property but has the meaning of assigning/returning multiple values to a property; if you

use a collection to set multiple values to a property and afterwards you add a new value to

that collection, the values of the property will be not affected: the only way to change the

values of a property is to invoke again the corresponding set method. A set method of a

property P (i.e. a method having name “setP”) always substitutes all the values of the property

P. The get method of a multiple-values property P (i.e. a method having name “getP”) never

returns null values, but only filled or empty collections; trying to set a multiple-values property

with a null value will raise an exception.

When an instance of an interface corresponding to an HHR conceptual class having

stereotype <<role>> is created (e.g. Patient, that is a role of a Person), the resulting Java

object implements both the instantiated interface (e.g. Patient) and the corresponding player

interface (e.g. Person). This allows to assign an object having a certain role type also to the

properties that expect the player type (but not vice versa). The implementation of each

property inherited by the player interface is implemented by delegation to the player object.

Therefore, setting the age of a Person instance is equivalent to set the age of any of its role

instances (and vice versa), and all role properties return the same values of the corresponding

properties of the player instance (and vice versa). In other terms, instances of different roles,

D3.3 Health Record Structure: Software
prototype v1

19/01/2018

8/20

having a same entity as a player, represent different views of that entity. Each view of a same

entity has a distinct identity (i.e. the same Person may play different Patients that share the

same properties of the played Person, but have also additional properties).

As explained in deliverable D3.1, all non-leaf classes of the HHR conceptual model are

ontological abstract classes (i.e. their instances are all and only the instances of their

subclasses). Correspondingly, only leaf Java interfaces can be "instantiated” (i.e. the

HHRFactory will raise an exception if asked to create an instance of a non-leaf interface) 4.

Figure 3 Specification of class Person

4
 Note that this is not a direct consequence of the fact that non-leaf HHR conceptual classes are ontologically

abstract, but it is a design choice made to simplify the usage of the HHR API. Other implementations of the HHR
model could allow to instantiate non-leaf conceptual classes, to represent entities which most specific type is yet
unknown. Such a kind of implementation could allow to dynamically set a more specific type to an object, after its
instantiation, and/or could allow the management of distinct Java objects that represent the very same real world
entity at different levels of detail. Such advanced functionalities are currently not required by use cases; therefore,
the corresponding complexity is avoided.

D3.3 Health Record Structure: Software
prototype v1

19/01/2018

9/20

For instance (see section 4.3 of deliverable D3.1), the class Person (reported in Figure 3) is a

leaf class that specializes the abstract class Agent. The HHR Manager allows to create an

instance of Person, while Agent, IdentifiedEntity, HHR are not instantiable. The HHR

conceptual model also contains abstract classes that are not leaf classes, e.g. although

AutomaticAgent is a leaf class in the conceptual model, it is expected to be specialized in next

versions of the HHR model and thus the corresponding Java interface is a not instantiable.

The HHR Manager assumes that no more than one one Java object is created for describing

any real world entity. In any case, it is possible to create several instances that represent

generic entities, i.e. that represent a single entity which specific identity is unknown, but which

type and possible other properties are known. A generic entity is represented by an instance

of a concrete subtype of IdentifiedEntity which identifiers are not set. For example, to

represent a Condition identified by a Practitioner and reported by a Patient that has not

specified the identity of the Practitioner, an instance of Practitioner without identifier is set as

value of the attribute performer of the Condition5.

Some Java property corresponds to UML association-ends of the HHR conceptual model.

Each association of the HHR conceptual model can be navigated only in one direction,

therefore only one UML association-end of each association is represented in Java.

The current implementation of the HHR model is based on a fully open word assumption, i.e.

it’s not possible to know if the information about an entity is complete or not. For instance, if a

get method returns some values (or no value), it means that only those values (or no value)

are (is) known for the corresponding property, but cannot be excluded that other values may

exist for the corresponding attribute of the corresponding real world entity. The implementation

does not allow to assert that no other values exist for a property. As a consequence of the

open world assumption, no cardinality constraints are enforced by the implementation, with

the exception of the distinction between single-value (i.e. maximum cardinality equal to 1) and

multiple-value (i.e. maximum cardinality greater than 1) properties. If a property is multiple-

value, then setting that property with an empty collection means just that no value of that

property is known (it does not mean that no value exists). Similarly, if a property is multiple-

values then setting a null value means that the value of that property is unknown.

2.2. HHR to FHIR mapping

The HHR model is based on the FHIR standard, although it is designed at a more conceptual

level and it is more specific than the FHIR model. A mapping between the two models was

firstly expressed in deliverable D3.1 in a semiformal way, and now it has been expressed in a

5
 Generic entities have been introduced after the release of the first version of the HHR model and led to remove

from the model the subclasses of Condition, named ConditionIdentifiedByPractitioner and
ConditionIdentifiedByPatient, originally introduced to distinguish the type of the performer of a Condition when the
identity of the performer is unknown. Now the HHR conceptual class Condition is concrete.

D3.3 Health Record Structure: Software
prototype v1

19/01/2018

10/20

machine-interpretable format, using an XML language, called “HHR mapping language”,

specifically developed for the HHR model.

The HHR mapping language allows to express in a declarative way both the structure of the

HHR model and the needed transformations to convert any HHR instance in a corresponding

FHIR resource or data. The description is modularized according to the classes of the HHR

model.

Each class of the HHR conceptual model corresponds to one or more FHIR resources or data

type. When no explicit conversion rule is provided for an HHR type then each instance of that

type will have the same representation in both the HHR model and the FHIR model. In

particular no conversion is needed for primitive values and for the complex type Identifier.

Each tag occurrence in the XML mapping document describes a portion of the HHR model

and also expresses a conversion rule for that portion of model. Each conversion rule may

trigger other conversion rules (for instance, a tag <class> represents a conversion rule to

convert an instance of a certain HHR type to the corresponding FHIR instance and triggers

other conversion rules represented by nested tags <attribute>, to convert the attributes of the

instance; each tag <attribute> on turn triggers some <class> rule to convert the values of the

translated attribute).

In this document, the HHR instance to be converted to FHIR is called source-HHR-instance,

while the FHIR resource or data record that is the result of the conversion is called target-

FHIR-instance.

The machine-interpretable mapping can be used during a validation process to check that a

target-FHIR-instance, already associated to a source-HHR-instance, has the correct type and

structure or can be used during a conversion process to convert a source-HHR-instance to a

corresponding target-FHIR-instance.

The conversion of a source-HHR-instance starts applying the conversion rules represented by

the tag <class> corresponding to the type of that instance.

In the next sections specify the syntax and semantics of the XML tags used by the HHR

mapping language.

Tag <hhr-to-fhir>

The tag <hhr-to-fhir> is the root tag of any mapping document expressed with the HHR

mapping language. It must contain one or more nested tags, chosen from <class>, <enum> or

<role>.

D3.3 Health Record Structure: Software
prototype v1

19/01/2018

11/20

Tag <class>

The tag <class> is a nested repeatable tag of the tag <hhr-to-fhir>. The tag <class> is used to

represent a (source) HHR class and the corresponding (target) FHIR resource type or

complex data type. The tag <hhr-to-fhir> contains an occurrence of this tag for each

conceptual class of the HHR model.

It is possible to nest in the tag <class> zero or more tags <attribute>, <resource> or

<categoryAttribute>. The mapping expressed by a tag <class> for an HHR class is also a

default mapping for the attributes of all its HHR subclasses. Therefore, the mapping of an

HHR class is expressed by the information contained in the tag <class> having the

corresponding hhrName plus the mapping information expressed by the tag <class> or <role>

of its superclass and recursively by its ancestor classes. The content of a tag <class> may

override (i.e. substitute), other then extend, the mapping inherited from the superclass tag

<class> or <role>.

The following tag-attributes are supported by the tag <class>:

- hhrName: the name of a HHR conceptual class that is the type of a source-HHR-instance

that can be converted to a target-FHIR-instance using the mapping expressed by this tag.

It's a syntax error if a mapping file contains two occurrences of tag <class> with a same

value of the attribute hhrName. Note that the HHR model arranges classes into UML

packages but it is forbidden to have two classes with the same name, also if they belong

to different packages, therefore only simple HHR class names, without package names,

are used as values of hhrName.

- [optional] fhirName: the name of the FHIR type (a resource type or a complex data type)

of the corresponding target-FHIR-instance. By default, fhirName is equal to hhrName. If

fhirName is set to the empty string, then the source HHR conceptual class have no

corresponding FHIR type (but as the attributes of the source class are inherited by the

subclasses they may be still mapped in the tags <class> of the subclasses).

- [optional] hhrSupertype: the name of the HHR conceptual class that is the superclass of

the class referred by hhrName, if any (note that in the HHR model only single inheritance

is allowed).

- [optional] isAbstract: ‘true’ if the HHR conceptual class named hhrName is abstract,

‘false’ otherwise.

Tag <role>

The tag <role> is a nested repeatable tag of the tag <hhr-to-fhir>. This tag <role> is very

similar to the tag <class> and is used instead of the tag <class> when the class to map has

the UML stereotype <<role>>. The tag <hhr-to-fhir> contains an occurrence of this tag for

each conceptual class of the HHR model having stereotype <<role>>. The tag <role> may

have the same nested tags and tag-attributes of the tag <class>, having the same semantics

D3.3 Health Record Structure: Software
prototype v1

19/01/2018

12/20

and constraints. Note that any HHR <<role>> class must always have an attribute named

“player”, that must be mapped using a nested tag <attribute>.

Tag <attribute>

The tag <attribute> is a nested repeatable tag of the tags <class>, <role>, <instance>. Each

tag <attribute> specifies a rule to convert and copy the values of an (possibly nested) attribute

(source-attribute) of the source-HHR-instance into the values of a corresponding (possibly

nested) attribute (target-attribute) of the target-FHIR-instance or to set the target-attribute to a

predefined value. Tags <attribute> can be nested within other tags <attribute> to represent the

conversion rules of attributes that have complex values (i.e. not primitive). Nested tags are

useful when the conversion of complex values depends from the containing attribute. If some

type of complex value is mapped also with a tag <class> or <role>, the mapping expressed by

the containing attribute overrides the one expressed by the tags <class> or <role>.

If the values of the source-HHR-instance are primitive, they are copied into the corresponding

attribute of the target-FHIR-instance exactly as they are, without any conversion. If the values

of the attribute of the source-HHR-instance are not primitive, they are firstly converted by

means of the mapping rules corresponding to their type, expressed by the nested tags

<attribute> (if any) or (if no nested tags <attribute> are specified) by the tags <class>

corresponding to the HHR type of the value, and then copied to the attribute of the target-

FHIR-instance. If no tag <class> for the type of the values is specified, then also complex

values are copied without any conversion. Note that the conversion of the values is not done

on the base of the type of the attribute but on the base of the type of the value itself.

The mapping expressed by a tag <attribute> may override the one expresses in the tag

<class> of the HHR superclass and may be overridden by a corresponding tag <attribute> in

the tag <class> of an HHR subclass.

The following tag-attributes are supported by the tag <attribute>:

- [optional] hhrPath: the path, relative to the source-HHR-instance, of the source-attribute

to convert to a corresponding target-attribute of the target-FHIR-instance. The hhrPath is

expressed as a FHIRPath expression. If two tags <attribute> within the same containing

tag specifies a same hhrPath they must specify a different hhrType (see tag-attributes

hhrType and isMultipleValue) or must specify a different fhirPath. Note that a FHIRPath

expression may identify a set of values to convert that belong to different objects, e.g. if

hhrPath=“x.y” then the conversion and copy is applied to any value of the attribute y of

any value of the attribute x of the source-HHR-instance. The hhrPath may also be set to

an empty string. In this case the tag <attribute> is used to set the value of a FHIR target-

attribute with a predefined value (see tag-attribute fhirValue) or with a complex FHIR

value defined by nested tags <attribute>. By default, hhrPath is equal to an empty string.

- [optional] fhirPath: the path, relative to a target-FHIR-instance, of the target-attribute,

expressed using the FHIRPath syntax. This path normally identifies a single node (i.e.

D3.3 Health Record Structure: Software
prototype v1

19/01/2018

13/20

attribute) within the tree structure of the target-FHIR-instance. If the fhirPath identifies

more than one node, then the converted values (i.e. the results of the conversion of the

values of the attribute identified by hhrPath) are set as values of each identified FHIR

node. Moreover, if a path x1.x2. …xn is specified and for some integer i<n the path x1.x2.

…xi refers to a not valorised FHIR attribute xi, then a new (empty) FHIR entity Vi is set as

value of that xi, in order to assure the full path is actually traversable. The type Ti of Vi is

explicitly specified by the fhirPath using the FHIRPath syntax for polymorphic items, i.e.

x1.x2. …xi(Ti). …xn, or is otherwise assumed to be the same type of the attribute xi. If the

type Ti determined with these rules is not instantiable, then a conversion exception is

raised. Several tags <attribute> having the same fhirPath may be specified within the

same tag <class> or <role> to assign more than one value to a same target-attribute. If no

fhirPath is explicitly specified, then it is assumed to be equal to the hhrPath. If the fhirPath

is explicitly set to an empty string (i.e. fhirPath=“”) then the source-attribute have no

corresponding FHIR target-attribute (but it is possible, nesting other tags <attribute>, to

map the attributes of the values of the source-attribute to corresponding FHIR target-

attribute). An exception is raised if both hhrPath and fhirPath are set to an empty string.

- hhrType: the name of the type of the source-attribute. If two tags <attribute> within the

same containing tag specify a same hhrPath they must specify a different hhrType. An

HHR attribute is allowed to have only values of a type specified by one of the tags

<attribute> having the hhrPath of that attribute. Moreover, more than one type may be

specified as value of hhrType using the pipe (|) to separate the different types.

- [optional] fhirExtension: the name of a FHIR extension used as target-attribute. By

convention, the fully qualified name of the FHIR StructureDefinition defining the specified

extension is http://www.crowdhealth.eu/fhir/StructureDefinition/name, where the name is

the one specified by fhirExtension.

- [optional] fhirValue: used to set the value of the target-attribute, when it does not depend

on a source-attribute (i.e. when hhrPath=“”). Using the tag-attribute fhirValue the target-

attribute may be set to a fixed data value or to the target-FHIR-instance itself, represented

by the special expression $this. The tag-attribute fhirValue cannot be used if hhrPath is

not equal to “”.

- [optional] isMultipleValue: ‘true’ if the source-attribute indicated by the hhrPath accepts

more than one value of the specified hhrType. If no hhrType is specified, the constraint

applies to values of any type. The default value of isMultipleValue is ‘false’. This tag-

attribute cannot be used if the hhrPath is empty (hhrPath=“”). Note that if two tags

<attribute> with the same hhrPath have isMultipleValue=”false” the target-attribute will be

allowed to have two distinct values (one for each different hhrType).

http://www.crowdhealth.eu/fhir/StructureDefinition/name

D3.3 Health Record Structure: Software
prototype v1

19/01/2018

14/20

Tag <categoryAttribute>

The tag <categoryAttribute> is a repeatable nested tag of the tags <class>, <role>,

<instance>. The tag <categoryAttribute> is used when the values of the (FHIR) target-attribute

(e.g. the FHIR attribute named “category”) depend on the type of the values of the (HHR)

source-attribute. Note that this is different from the tag <attribute> where the values of the

target-attribute depend from the values of the source-attribute instead than the type of the

values. The tag <categoryAttribute> can be used also if the target-attribute has a fixed code

as value. The usage of <categoryAttribute> is allowed only if the type of the target-attribute is

CodeableConcept or code. The target-attribute is set to a fixed value using the tag-attribute

fhirCode, or to values that depend on the type of the source-attribute (e.g. the attribute type of

the HHR class Procedure) using the tag-attribute hhrPath. The value of the tag-attribute

fhirCode cannot be set if the value of the tag-attribute hhrPath is set. The values of the

attribute specified by the hhrPath must be instances of an enumeration and are converted to

corresponding FHIR code values using the mapping specified by the corresponding tag

<enum> (see also tag-attributes fhirCategoryType, fhirCategoryCode, fhirCategorySystem and

fhirCategoryDisplay in tag <enum>).

The following tag-attributes are supported by the tag <categoryAttribute>:

- [optional] hhrPath: the path, relative to the source-HHR-instance, of the source-attribute.

The default value of hhrPath is the empty string. If a hhrPath is set to the empty string,

there is no source-attribute and the target-attribute is set to the value specified by tag-

attribute fhirCode (together with tag-attributes fhirSystem and fhirDisplay).

- [optional] fhirPath: the path, relative to the target-FHIR-instance, of the target-attribute.

The value of this tag-attribute is interpreted in the same way of the homonymous tag-

attribute of tag <attribute>. When no explicit fhirPath is explicitly specified the default

value “category” is assumed (note that this is different from the default of the same tag-

attribute of tag <attribute>). Several tags <categoryAttribute> with the same fhirPath may

be specified within the same tag <class> or <role> to assign more than one value to the

same target-attribute.

- [optional] fhirCode: the value of the ‘code’ field of the value of the target-attribute. If the

hhrPath is set to an empty string, then it is mandatory to set the fhirCode value with a not

empty string.

- [optional] fhirDisplay: the value of the ‘display’ field of the value of the target-attribute.

- [optional] fhirSystem: the value of the ‘system’ field of the value of the target-attribute.

- [optional] hhrType: the type name of the value of the source-attribute. It must be the

name of an enumeration defined in the HHR model (see tag <enum>).

D3.3 Health Record Structure: Software
prototype v1

19/01/2018

15/20

Tag <resource>

The tag <resource> is a repeatable nested tag of the tags <class>, <role>, <attribute>,

<instance>. The tag <resource> is used when the conversion of a source-HHR-instance

implies the creation of some other related new FHIR resource other than the target-FHIR-

instance. Such a new resource is specified using the <resource> tag. It is similar to the tag

<class> because it implies the creation of a FHIR resource, and as such it can nest one or

more <attribute> and <categoryAttribute>. The tag <resource> requires to specify an ID, that

must unique in the scope of the containing tag, to be used as a reference to the created

resource in the containing tag. By convention, a reference to a <resource> is expressed in the

form $ID, where ID is the value of the tag-attribute id of the tag <resource>.

The following tag-attributes are supported by the tag <resource>:

- id: the local unique ID used to refer to the new FHIR resource in the scope of its

containing tag.

- fhirType: the name of the type of the new FHIR resource to instantiate.

Tag <enum>

The tag <enum> is a nested repeatable tag of the tag <hhr-to-fhir>. It is used to map each

value (source-HHR-instance) of an HHR enumeration (source-enumeration) to a

corresponding value (target-FHIR-instance) of a FHIR datatype (target-datatype). The target-

FHIR-instance may also belong to a specific FHIR ValueSet. The values of the source-

enumeration are specified by means of the tag <instance> nested in the tag <enum>.

Moreover, the source-enumeration itself may be mapped to a specific code or category value,

using the tag-attributes fhirCategoryCode, fhirCategorySystem and fhirCategoryDisplay.

The following tag-attributes are supported by the tag <enum>:

- hhrName: the name of the source-enumeration.

- fhirValueSet: the FHIR ValueSet that the target-FHIR-instance belongs to.

- fhirName: the FHIR datatype (e.g. code or CodeableConcept) of the target-FHIR-

instance.

- [optional] fhirCodingSystem: the name of the coding system to be assigned to the

“system” field of the target-FHIR-instance, when it is a FHIR CodeableConcept.

- [optional] fhirCategoryCode: used to specify a FHIR code associated to the source-

enumeration itself.

- [optional] fhirCategoryType: used to specify the type of FHIR code (a ValueSet or a

CodeableConcept) associated to the enum itself.

D3.3 Health Record Structure: Software
prototype v1

19/01/2018

16/20

- [optional] fhirCategorySystem: used to specify the system of the code associated to the

source-enumeration itself.

- [optional] fhirCategoryDisplay: used to specify the display name of the code associated

to the source-enumeration itself.

- [optional] isAbstract: used to specify if the source-enumeration is abstract. The default

value is false.

Tag <instance>

The tag <instance> is used within a tag <enum> to map a source-HHR-instance that is a value

of an HHR enumeration to a corresponding target-FHIR-instance. Tags <attribute> may be

nested within the <instance> tag to set the attributes of complex FHIR values.

The following tag-attributes are supported by the tag <instance>:

- hhrName: the name of the source-HHR-instance.

- fhirCode: the target-FHIR-instance (when it is a FHIR “code”), or the value of the “code”

field of the target-FHIR-instance (when it is a FHIR CodeableConcept).

- fhirCodeDisplay: the value of the “display” field of the target-FHIR-instance, when it is a

FHIR CodeableConcept.

- [optional] fhirCodingSystem: the name of the coding system to be assigned to the

“system” field of the target-FHIR-instance, when it is a FHIR CodeableConcept. When

present this tag-attribute overrides (i.e. substitute) the value specified by the tag-attribute

fhirCodingSystem of the containing tag <enum>.

- [optional] fhirType: the resource type or the datatype of the target-FHIR-instance. When

this tag-attribute is present, it overrides (i.e. substitute) the value of the tag-attribute

fhirName of the containing tag <enum>.

2.3. HHR to FHIR mapping example

This section reports an example of usage of the HHR mapping language. In particular, it

shows how to map the class Condition of the HHR model. It maps the HHR class Condition to

the homonymous FHIR resource type Condition. An instance of HHR Condition is converted to

an instance of FHIR Condition plus a related FHIR instance of type Provenance (described by

the tag <resource>), which attribute target is not mapped to any HHR attribute and is set to a

reference to the FHIR Condition (expressed by setting the tag-attribute fhirValue=“$this”).

Note that, when a class (like Condition, in this example) inherits from a supertype (Event, in

this example), the mapping of all the inherited attributes may be specified by the mapping of

the supertype. If the supertype inherits from another supertype the mapping is also specified

by the mapping of its supertype (if any) and so on. The specification of the mapping of an

D3.3 Health Record Structure: Software
prototype v1

19/01/2018

17/20

HHR class ends where there is a type without any supertype. In the case of the class

Condition of the HHR model, the mapping to FHIR ends in the class IdentifiedEntity which

hasn’t any supertype (the inheritance chain is IdentifiedEntity, Event, Condition).

The attribute identifier of the HHR class Condition is mapped to the attribute identifier of the

FHIR type Condition. The mapping of this attribute is contained in the tag <class> of the HHR

conceptual class IdentifiedEntity. Note that this HHR conceptual class have no correspondent

FHIR type (indeed the tag-attribute fhirName is empty). More in details the value of the value

attribute of Identifier is set to the value attribute of FHIR identifier while the attribute system of

the HHR class Identifier is set with the value of the attribute system of the FHIR type Identifier.

Note that isMultipleValue=”true” so there can be more than one value for the attribute

identifier.

The attribute recorder of type Agent is mapped to the attribute agent.who of the FHIR type

Provenance defined in the tag <resource> having ID ‘prov’ (i.e. fhirPath=“$prov.agent.who”),

while the HHR attribute recorderWhen is mapped to the attribute recorder of the same FHIR

instance of type Provenance (fhirPath="$prov.recorded").

The attribute isAutomatic of the HHR class Condition is mapped to an extension of the FHIR

type Condition, which StructureDefinition has URI

http://www.crowdhealth.eu/fhir/StructureDefinition/is-automatic.

The attribute subject of the HHR type Condition is mapped to the homonymous attribute of

FHIR type Condition.

The attribute asserter of HHR Condition is also mapped to the homonymous attribute of FHIR

Condition. According to the HHR model reported in D3.1, the asserter can be a Patient or a

Practitioner (Patient and Practitioner are both subclasses of HealthCarePerson).

The HHR attribute performedWhen is mapped to an extension (of type Period) of the FHIR

type Condition, which StructureDefinition is defined at

http://www.crowdhealth.eu/fhir/StructureDefinition/performed-when.

The attribute HHR assertedWhen is mapped to the FHIR attribute assertedDate (of type

Period).

The HHR attribute conditionClinicalStatus is mapped to the FHIR attribute clinicalStatus and it

can be set with one of the values listed in the mapping of the ClinicalStatus enum.

The HHR attribute subjectAge is mapped to the FHIRattribute onset. It can be a Range or a

Period depending on the kind of value set in subjectAge.

If the value of conditionType is an instance of the HHR enumeration ClinicalFinding, then the

attribute category of the FHIR Condition is set to a CodeableConcept which field system is

equal to ‘http://www.crowdhealth.eu’, which field code is equal to ‘clinical-finding’ and which

http://www.crowdhealth.eu/fhir/StructureDefinition/is-automatic
http://www.crowdhealth.eu/fhir/StructureDefinition/performed-when.

D3.3 Health Record Structure: Software
prototype v1

19/01/2018

18/20

field display is equal to ‘Clinical finding’. If the value of conditionType is an instance of the

HHR enumeration Diagnosis, the field system is equal to ‘http://www.crowdhealth.eu’, the filed

code is equal to ‘diagnosis’ and the field display is equal to ‘Diagnosis’.

The HHR attribute type is mapped to the FHIR attribute code of the target FHIR Condition.

The type is CodeableConcept and the values of the fields system, code, and display depend

on the type of the value (in this case the enum Diagnosis or ClinicalFinding).

Finally, the HHR attribute performer is mapped to an extension of the FHIR type Condition,

which StructureDefinition has URI

http://www.crowdhealth.eu/fhir/StructureDefinition/performer. The value is a reference to an

instance of FHIR Patient or FHIR Practitioner. Note that isMultipleValue=”true” so there can be

more than one instance of the attribute performer.

<hhr-to-fhir>

 <class hhrName="IdentifiedEntity" fhirName="" isAbstract="true" >
 <attribute hhrPath="identifier" hhrType="Identifier" isMultipleValue="true" />
 </class>

 <class hhrName="Identifier">
 <attribute hhrPath="value" hhrType="string" />
 <attribute hhrPath="system" hhrType="string" />
 </class>

 <class hhrName="Event" fhirName="" hhrSupertype="IdentifiedEntity" isAbstract="true">
 <resource id="prov" fhirType="Provenance">
 <attribute fhirPath="target" fhirValue="$this" />
 </resource>
 <attribute hhrPath="recorder" fhirPath="$prov.agent.who" hhrType="Agent" />
 <attribute hhrPath="recordedWhen" fhirPath="$prov.recorded" hhrType="dateTime" />
 <attribute hhrPath="isAutomatic" fhirExtension="isAutomatic" hhrType="boolean"/>
 </class>

 <class hhrName="Condition" hhrSupertype="Event" isAbstract="true" >
 <attribute hhrPath="subject" hhrType="Patient" />
 <attribute hhrPath="performer" fhirExtension="performer" hhrType="HealthCarePerson" isMultipleValue="true" />
 <attribute hhrPath="asserter" fhirPath="asserter" hhrType="HealthCarePerson" />
 <attribute hhrPath="performedWhen" fhirExtension="performedWhen" hhrType="Period" />
 <attribute hhrPath="assertedWhen" fhirPath="assertedDate" hhrType="dateTime" />
 <attribute hhrPath="conditionClinicalStatus" fhirPath="clinicalStatus" hhrType="ClinicalStatus" />
 <attribute hhrPath="subjectAge" fhirPath="onset" hhrType="Range|Duration" />
 <categoryAttribute hhrPath="conditionType" hhrType="ConditionType" />
 <attribute hhrPath="type" fhirPath="code" hhrType="ConditionType" />
 </class>

 <enum hhrName="ConditionType" isAbstract="true"/>

 <enum hhrName="ClinicalStatus" fhirName="code" fhirValueSet="condition-clinical">
 <instance hhrName="ACTIVE" fhirCode="active" />
 <instance hhrName="ACTIVE_RECURRENCE" fhirCode="recurrence" />
 <instance hhrName="INACTIVE" fhirCode="inactive" />
 <instance hhrName="INACTIVE_REMISSION" fhirCode="remission" />
 <instance hhrName="INACTIVE_RESOLVED" fhirCode="resolved" />
 </enum>

http://www.crowdhealth.eu/fhir/StructureDefinition/performer.

D3.3 Health Record Structure: Software
prototype v1

19/01/2018

19/20

 <enum hhrName="Diagnosis" fhirName="CodeableConcept" fhirCodingSystem="http://www.crowdhealth.eu/hhr-t"
hhrSupertype="ConditionType" fhirCategoryType="CodeableConcept" fhirCategoryCode="diagnosis"
fhirCategoryDisplay="Diagnosis" fhirCategorySystem="http://www.crowdhealth.eu/hhr-t">

 <instance hhrName="INTRADUCTAL_CARCINOMA" fhirCode="intraductal-carcinoma" fhirCodeDisplay="Intraductal

carcinoma" />
 <instance hhrName="ESTROGEN_RECEPTOR_POSITIVE_TUMOR" fhirCode="estrogen-receptor-positive-tumor"

fhirCodeDisplay="Estrogen receptor positive tumor" />
 <instance hhrName="ESTROGEN_RECEPTOR_NEGATIVE_NEOPLASM" fhirCode="estrogen-receptor-negative-

neoplasm" fhirCodeDisplay="Estrogen receptor negative neoplasm" />
 <instance hhrName="PROGESTERONE_RECEPTOR_POSITIVE_TUMOR" fhirCode="progesterone-receptor-

positive-tumor" fhirCodeDisplay="Progesterone receptor positive tumor" />
 <instance hhrName="PROGESTERONE_RECEPTOR_NEGATIVE_NEOPLASM" fhirCode="progesterone-receptor-

negativeneoplasm" fhirCodeDisplay="Progesterone receptor negative neoplasm" />
 <instance hhrName="POSITIVE_CARCINOMA_OF_BREAST" fhirCode="her2-positive-carcinoma-of-breast"

fhirCodeDisplay="HER2-positive carcinoma of breast" />
 <instance hhrName="HUMAN_EPIDERMAL_GROWTH_FACTOR_2_NEGATIVE_CARCINOMA_OF_BREAST"

fhirCode="" fhirCodeDisplay="Human epidermal growth factor 2 negative carcinoma of breast" />
 <instance hhrName="MALIGNANT_TUMOR_OF_BREAST" fhirCode="malignant-tumor-of-breast"

fhirCodeDisplay="Malignant tumor of breast" />
 <instance hhrName="SECONDARY_MALIGNANT_NEOPLASM_OF_LIVER" fhirCode="secondary-malignant-

neoplasm-of-liver" fhirCodeDisplay="Secondary malignant neoplasm of liver" />
 <instance hhrName="SECONDARY_MALIGNANT_NEOPLASM_OF_LUNG" fhirCode="secondary-malignant-

neoplasm-of-lung" fhirCodeDisplay="Secondary malignant neoplasm of lung" />

 </enum>

</hhr-to-fhir>

D3.3 Health Record Structure: Software
prototype v1

19/01/2018

20/20

3. Source code

The current prototype of the HHR Manager is released on the Artefacts repository of the

project as a jar file named “HHR Manager_v1.0.0”, while the machine-interpretable mapping is

released as a separate XML file named “hhr_to_fhir_v1.0.0.xml”. The jar file contains the

source code of the HHR manager written in Java 8. The mapping file is written in XML version

1.0.

3.1. Availability

Both the files can be downloaded from the project repository:

https://crowdhealthtasks.ds.unipi.gr/CrowdHEALTH/artefacts/tree/master/HHRManager.

3.2. Usage

The HHR Manager have no dependencies, apart the availability of a standard java virtual

machine that support Java 8, and can be imported in any compatible project. Similarly, the

mapping file may be read with any XML parser compatible with XML version 1.0.

https://crowdhealthtasks.ds.unipi.gr/CrowdHEALTH/artefacts/tree/master/HHRManager

