

This project has received funding from the European Union’s Horizon 2020 Programme
(H2020-SC1-2016-CNECT) under Grant Agreement No. 727560

Collective Wisdom Driving Public Health Policies

D3.21 Reliable Information Provision in

Healthcare: Software Prototype v1

 Project Deliverable

D3.21 Reliable Information Provision in
Healthcare: Software Prototype v1

02/03/2018

2/26

D3.21 Reliable Information Provision in Healthcare: Software Prototype v1

Work Package: WP3

Due Date: 31/12/2017

Submission Date: 02/03/2018

Start Date of Project: 01/03/2017

Duration of Project: 36 Months

Partner Responsible of Deliverable: SILO

Version: 1.1

Status:

 Final Draft Ready for internal Review

 Task Leader Accepted WP leader accepted

 Project Coordinator accepted

Author name(s):
Dimitris Miltiadou (SiLo), Konstantinos Perakis (SiLo),

Thanos Kiourtis, Dimitris Poulopoulos (UPRC)

Reviewer(s): M. Patiño (UPM) U. Wajid (ICE)

Nature: R – Report D – Demonstrator

Dissemination level:

 PU – Public

 CO – Confidential

 RE – Restricted

D3.21 Reliable Information Provision in
Healthcare: Software Prototype v1

02/03/2018

3/26

REVISION HISTORY

Version Date Author(s) Changes made

0.1 08/01/2018 Dimitris Miltiadou (SiLo) Draft – Index

0.2 15/01/2018 Konstantinos Perakis &
Dimitris Miltiadou (SiLo)

Contributions to section 2

0.3 19/01/2018 Konstantinos Perakis &
Dimitris Miltiadou (SiLo)

Contributions to section 2

0.4 24/01/2018 Konstantinos Perakis &
Dimitris Miltiadou (SiLo)

Contributions to section 3

0.4 29/01/2018 Thanos Kiourtis, Dimitris
Poulopoulos (UPRC)

Contributions to section 2

0.5 02/02/2018 Thanos Kiourtis, Dimitris
Poulopoulos (UPRC)

Contributions to section 2

0.6 09/02/2018 Thanos Kiourtis, Dimitris
Poulopoulos (UPRC)

Contributions to section 3

0.7 12/02/2018 Dimitris Miltiadou (SiLo) Minor modifications in
sections 2 and 3

0.8 15/02/2018 Konstantinos Perakis (SiLo) Review ready Version

0.8_ICE 23/02/2018 Usman Wajid (ICE) ICE internal review

0.8_UPM 26/02/2018 Marta Patiño (UPM) UPM internal review

0.9 27/02/2018 Dimitris Miltiadou (SiLo) Addressed review comments

0.95 27/02/2018 Thanos Kiourtis, Dimitris
Poulopoulos (UPRC)

Addressed review comments

1.0 28/02/2018 Dimitris Miltiadou (SiLo) Final Version

1.1 02/03/2018 ATOS Quality review , submission to
EC.

D3.21 Reliable Information Provision in
Healthcare: Software Prototype v1

02/03/2018

4/26

List of acronyms

IDE Integrated Development Environment

HHR Holistic Health Records

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

JWT JSON Web Token

POM Project Object Model

RFC Request For Comments

UML Unified Modeling Language

URL Uniform Resource Locator

XML Extensible Markup Language

D3.21 Reliable Information Provision in
Healthcare: Software Prototype v1

02/03/2018

5/26

Contents

Executive Summary .. 7

1. Introduction .. 8

2. Prototype overview ... 9

2.1. Main components of the prototype .. 9

2.1.1. Data Cleaner .. 9

2.1.2. Sources Verifier ... 15

2.2. Interfaces .. 19

2.2.1. Data Cleaner .. 19

2.2.2. Sources Verifier ... 21

2.3. Baseline technologies and tools .. 22

2.3.1. Data Cleaner .. 22

2.3.2. Sources Verifier ... 22

3. Source code ... 23

3.1. Data Cleaner ... 23

3.1.1. Availability .. 23

3.1.2. Exploitation .. 23

3.2. Sources Verifier... 24

3.2.1. Availability .. 24

3.2.2. Exploitation .. 24

4. Conclusions ... 25

5. References ... 26

D3.21 Reliable Information Provision in
Healthcare: Software Prototype v1

02/03/2018

6/26

List of figures

Figure 2-1: Data Cleaner component design ... 9

Figure 2-2: Data Cleaner model .. 10

Figure 2-3: Sources Verifier component design ... 15

Figure 2-4 Sources Verifier model ... 16

List of tables

Table 1- Authentication/Login Endpoint ... 20

Table 2 – Data Cleaning Endpoint ... 21

Table 3: Sources Reliability Endpoint .. 21

D3.21 Reliable Information Provision in
Healthcare: Software Prototype v1

02/03/2018

7/26

Executive Summary

The purpose of deliverable D3.21 - Reliable Information Provision in Healthcare: Software

Prototype v1 is to document the preliminary software development efforts undertaken within

the context of Task 3.5 – Data Cleaning Including Sources Reliability Assessment. D3.21 is a

demonstrator deliverable and the scope of the document at hand is to document the

implementation details of the Data Cleaner and Source Verifier component delivered within

the context of Task 3.5, as an accompanying report. The main component is composed by two

sub-components, namely the Data Cleaner, and the Source Verifier. For each sub-component,

the service prototype overview is provided by describing the components of the prototype. In

detail, this report documents the implemented processes and internal interfaces of each of the

services and the external interfaces exposed by each sub-component. Additionally, the

technologies and tools used in the implementation of each prototype are documented, along

with the necessary information concerning the source code availability and exploitation.

It should be noted that the development of the Data Cleaner and Source Verifier component is

a living process and this report defines the initial version of the software implementation. As

the project evolves, the updates and refinements on the design and the specifications of the

component that will be based on the initial evaluation of the services, and on any additional

requirements that may arise as the project evolves, will be documented in the deliverable

“Reliable Information Provision in Healthcare: Design and Open Specification v2” (D3.20).

This will drive the implementation of the second version of the Data Cleaner and Source

Verifier component which will be documented in the deliverable “Reliable Information

Provision in Healthcare: Software Prototype v2” (corresponding to D3.22).

D3.21 Reliable Information Provision in
Healthcare: Software Prototype v1

02/03/2018

8/26

1. Introduction

Deliverable D3.21 undertakes the documentation of the preliminary efforts carried out within

the context of Task 3.5 - Data Cleaning Including Sources Reliability Assessment. Task 3.5

aims at the development of the processes and mechanisms that will address the volatility of

the information provision towards the aim of providing the necessary accuracy, consistency

and usefulness of the incoming information and that will also ensure the reliability of the data

sources within the context of CrowdHEALTH. The implementation of the Data Cleaner and

Source Verifier component was driven by the architecture and the design presented in D3.19

of the project (Perakis K., Miltiadou D., Mavrogiorgou A., 2017) [1]. Since D3.21 is a

demonstrator deliverable, the current document is the accompanying report documenting the

software implementation information of the Data Cleaner and Source Verifier component

delivered within the context of Task 3.5. The Data Cleaner and Source Verifier component is

composed by two sub-components, namely the Data Cleaner sub-component that will address

the volatility of the information provision and the Source Verifier sub-component that will

address the reliability of the data sources. For each sub-component, the corresponding

prototype is documented by providing an overview of the components of the prototype and by

presenting the services of the prototype along with the list of processes and internal interfaces

for each of the services implemented. In addition to this, for each prototype the external

exposed interface is documented, along with the technologies and tools used for the

implementation of the services.

The current deliverable is organized in the following sections:

1. The first chapter introduces the deliverable, documents its scope and presents the

document structure. In addition to this, it documents the positioning of the deliverable

within the project and the relation of the current deliverable to the other project tasks

and deliverables.

2. In the second chapter, the Data Cleaner and Source Verifier prototype is presented in

two subsections. The subsections are focusing on describing the prototype of each of

the sub-components (i.e. Data Cleaner, and Sources Verifier) of the main component.

For each prototype all the services are presented along with the list of functions and

internal interfaces. In addition to the implemented services, the exposed external

interfaces are documented as well as the technologies and tools used in the

implementation.

3. In the third chapter, the necessary information concerning the source code availability

and exploitation is presented.

4. The final chapter concludes the current deliverable and provides references on the

future developments of the main component.

D3.21 Reliable Information Provision in
Healthcare: Software Prototype v1

02/03/2018

9/26

2. Prototype overview

2.1. Main components of the prototype

2.1.1. Data Cleaner

The scope of the Data Cleaner component is to undertake the processes of data cleaning and

data completion, to the extent possible, of the datasets provided from various heterogeneous

data information sources offering an important contribution in the course of accurate HHRs

(Holistic Health Records). The Data Cleaner component provides the interface that

implements the data cleaning workflow as documented in deliverable D3.19 of the project

(Perakis K., Miltiadou D., Mavrogiorgou A., 2017) to be utilized by the rest of the

CrowdHEALTH components ensuring data accuracy and consistency of the incoming

datasets.

The architecture and design of the Data Cleaner component was documented in D3.19 with

the purpose of addressing the volatility of the incoming data information towards the aim of

providing data accuracy, consistency and completeness to the CrowdHEALTH platform. The

Data Cleaner component implements the processes that identify inaccurate or corrupted

datasets containing inaccurate, incorrect, incomplete or irrelevant data elements and

consequently replace, modify or delete these data elements safeguarding the reliability and

appropriateness of the incoming data information. The design of Data Cleaner component as

documented in D3.19 is illustrated in Figure 2-1.

Figure 2-1: Data Cleaner component design

D3.21 Reliable Information Provision in
Healthcare: Software Prototype v1

02/03/2018

10/26

The software implementation of the Data Cleaner component was driven by this specification.

Figure 2-2 illustrates the component UML diagram.

Figure 2-2: Data Cleaner model

As displayed in the UML diagram the Data Cleaner component is composed by one main

service, namely the DataCleanerService, which in turn comprises of five internal services: the

ValidatorService, the CleanserService, the CompleterService, the VerifierService and the

LoggerService. The main service, DataCleanerService, handles all incoming and outgoing

traffic of the DataCleaner component and is the only service exposed to the rest of the

platform components. Additionally, the DataCleanerService implements the single exposed

interface for data cleaning and data completion requests which is exposed by the

DataCleanerController, the IDataCleanerService interface. Contrary to the main service, the

five internal services are not exposed to the rest of the platform components and the

DataCleanerService is interacting with these services via their internally exposed interfaces to

realize the data cleaning workflow.

D3.21 Reliable Information Provision in
Healthcare: Software Prototype v1

02/03/2018

11/26

2.1.1.1. DataCleanerService

The DataCleanerService is the main service of the Data Cleaner component in charge of

executing the data cleaning workflow of CrowdHEALTH platform. Since the data cleaning

workflow comprises of several sequential steps, each one implemented by one of the internal

services of the component, the DataCleanerService is responsible for the orchestration of

these internal services as well as for monitoring the execution and providing the execution

results to the requestor. In addition to the data cleaning workflow execution, the

DataCleanerService is responsible for the implementation of the single interface for data

cleaning and data completion requests, namely the IDataCleanerService.

The DataCleanerService implements the following three main functions:

 __init__(provider_id: String, dataset_id: String, logs_dir: String) : This is the main

function initiating the DataCleanerService. It receives as input the provider identity, the

dataset identity and the path to the logs directory.

 xml_to_data_frame(hhr: String): pandas.DataFrame : This is an internal function of the

service facilitating the conversion from XML to data frame.

 data_frame_to_xml(hhr_df: pandas.DataFrame): String : This is an internal function of

the service facilitating the conversion from data frame to XML.

In addition to the main functions, the DataCleanerService implements the single external

interface of the Data Cleaner component, namely the IDataCleanerService. The interface

handles the incoming requests for data cleaning and data completion and implements the

following single function:

 clean_data(hhr: String): String: This function orchestrates the rest of the internal

services towards the execution of the data cleaning workflow.

Moreover, the IDataCleanerService interface is exposed by the DataCleanerController which

is responsible for handling the incoming HTTP requests of the external exposed interface and

implements the following main function:

 clean (provider_id: String, dataset_id: String): Response: This function is responsible

for handling incoming HTTP requests to execute the data cleaning workflow on a

dataset and provide the results back to the requestor.

For more details on the exposed external interface please also refer to Section 2.2.

D3.21 Reliable Information Provision in
Healthcare: Software Prototype v1

02/03/2018

12/26

2.1.1.2. ValidatorService

The ValidatorService is the internal service responsible for the data validation processing of

the incoming information data. The ValidatorService performs a variety of validation checks in

order to evaluate the conformance to a set of constraints currently integrated in the business

logic of the service. The current list of validation rules includes conformance to specific data

types (integer, string, etc.) and identification of missing values for the data elements and will

be further enriched as the project evolves. The ValidatorService implements the following

functions:

 __init__(provider_id: String, dataset_id: String, hhr_df: pandas.DataFrame): This is the

main function initiating the ValidatorService. It receives as input the provider identity,

the dataset identity and the data frame representation of the HHR.

 __check_data_types(types: Dict): Void: This is an internal function validating the

conformance to the data types.

 __check_missing_values(): Void: This is an internal function for the identification of

missing values.

Additionally, the ValidatorService implements the internal interface namely IValidatorService

with the following main function:

 validate_data(): List: This function is responsible for initiating the data validation

execution. Once the data validity has been performed, the list of errors based on the

evaluation of the set of constraints is returned.

2.1.1.3. CleanserService

The CleanserService is the internal service responsible for the de-cleansing processing of the

incoming information data. The CleanserService eliminates the list of errors identified by the

ValidationService by applying all the necessary corrective actions on the data elements

marked with errors. De-cleansing is performed in an automated way based on a set of rules

currently integrated in the business logic of the component. The CleanserService implements

the following main function:

 __init__(provider_id: String, dataset_id: String, hhr_df: pandas.DataFrame,

validation_errors: List): This is the main function initiating the CleanserService. It

receives as input the provider identity, the dataset identity, the data frame

representation of the HHR and the list of identified errors as provided by

ValidatorService.

The CleanserService implements the internal interface namely ICleanserService with the

following main function:

 cleanse_data(): Tuple: This function is undertaking the necessary actions to perform

the de-cleansing processes. Upon receiving the incoming information data and the list

D3.21 Reliable Information Provision in
Healthcare: Software Prototype v1

02/03/2018

13/26

of errors as input, it returns the updated incoming information data along with the list of

actions performed during the de-cleansing process.

2.1.1.4. CompleterService

The CompleterService is the internal service undertaking the necessary actions to ensure the

data completeness of the incoming information data. To validate the data completeness, the

CompleterService is utilizing a predefined set of conformance rules indicating the mandatory

fields and required non-empty attributes. These set of conformance rules is currently

integrated in the business logic of the component. Following the data completeness

evaluation, automated data filling is performed based on interpolation or extrapolation

techniques. The CompleterService implements the following main functions:

 __init__(provider_id: String, dataset_id: String, hhr_df: pandas.DataFrame,

validation_errors: List): This is the main function initiating the CompleterService. It

receives as input the provider identity, the dataset identity, the data frame

representation of the HHR and the list of identified errors as provided by

ValidatorService.

 __drop(columns: List): Void: This is an internal function performing deletion of rows

from the dataset based on the columns received as input. More specifically, for each

column if there is an empty entry the respective row is deleted.

 __fill_with_value(columns: List, value): Void: This is an internal function for data value

completion based on the value received as an input.

 __fill_with_previous_observation(columns: List): Void: This is an internal function for

data value completion based on the previous observation (Last Observation Carried

Forward).

 __fill_with_next_observation(columns: List): Void: This is an internal function for data

value completion based on the next observation (Next Observation Carried Backward).

 __fill_with_mean(columns: List): Void: This is an internal function for data value

completion based on the mean value of column.

 __fill_with_median(columns: List): Void: This is an internal function for data value

completion based on the median value of column.

 __fill_with_most_frequent(columns: List): Void: This is an internal function for data

value completion based on the most frequent value of column.

 __update_errors(columns: List, correction_type:String): This is an internal function

responsible for updating the list of identified errors according to the actions

undertaken.

The CompleterService implements the internal interface namely ICompleterService with the

following main function:

 check_data_completeness(): Tuple: This function is responsible for the data

completeness evaluation and data completion process of the incoming information

D3.21 Reliable Information Provision in
Healthcare: Software Prototype v1

02/03/2018

14/26

data. Once the evaluation is complete, the data completion is performed and the

updated incoming data is returned along with the updated list of identified errors and

actions performed during the data completion process.

2.1.1.5. VerifierService

The VerifierService is the service responsible for the verification and evaluation of the

corrective actions undertaken by CleanserService and CompleterService with the aim of

ensuring the accuracy and consistency of the updated incoming information data according

the CrowdHEALTH platform requirements. The VerifierServices implements the following main

function:

 __init__(provider_id: String, dataset_id: String, hhr_df: pandas.DataFrame): This is the

main function initiating the VerifierService. It receives as input the provider identity, the

dataset identity and the data frame representation of the HHR.

The VerifierService implements the internal interface namely IVerifierService with the following

main function:

 verify_data() : List : The function is responsible for initiating the verification and

evaluation of the corrective actions and providing the results of the evaluation back to

the requestor.

2.1.1.6. LoggerService

The LoggerService is undertaking the responsibility of keeping records containing all the

errors identified and the corrective actions undertaken to address these errors during the data

cleaning workflow execution by the rest of the internal services of the Data Cleaner

component. For each execution of the data cleaning workflow a unique record will be created

and stored in the list of the records kept by the LoggerService. In the current implementation

the list of records is kept in a log file in the local file system where the LoggerService is

running. LoggerService implements the following main function:

 __init__(logs_dir: String) : This is the main function initiating the LoggerService. It

receives as input the path to the logs directory.

The LoggerService implements the internal interface namely ILoggerService with the following

main function:

 create_logs(provider_id: String, dataset_id: String, validation_errors: String): Void :

This function is responsible for creating a new record based on the information

provided as input. This new record is appended at the end of the log file.

D3.21 Reliable Information Provision in
Healthcare: Software Prototype v1

02/03/2018

15/26

2.1.2. Sources Verifier

The scope of the Sources Verifier component is to dynamically categorize both known and

unknown data sources to specific “levels of trustfulness” (i.e. data reliability, provided

information type, data availability), according to a given threshold, resulting into the adaptive

selection of all the available data sources in order to be connected into the CrowdHEALTH

platform. The Sources Verifier component provides the interface that implements the sources

verification workflow as documented in deliverable D3.19 of the project (Perakis K., Miltiadou

D., Mavrogiorgou A., 2017) to be utilized by the rest of the CrowdHEALTH components

providing all the necessary actions for choosing and finally keeping connected to the

CrowdHEALTH platform only the trustful and reliable data sources.

The architecture and design of the Sources Verifier component was documented in D3.19

aiming to provide a predictive selection mechanism for achieving data reliability and

availability during runtime, concerning both known and unknown data sources that have been

identified to be connected into the CrowdHEALTH platform. The component design of

Sources Verifier as documented in D3.19 is illustrated in Figure 2-3.

Figure 2-3: Sources Verifier component design

In more detail, the software implementation of the Sources Verifier component has been

captured based upon this component design, whose UML diagram is depicted in Figure 2-4.

D3.21 Reliable Information Provision in
Healthcare: Software Prototype v1

02/03/2018

16/26

Figure 2-4 Sources Verifier model

As displayed in the UML class diagram the Sources Verifier component is composed by one

main service, namely the SourcesReliabilityService, which in turn comprises of three internal

services, the SourcesRecognitionService, the SpecificationClassificationService, and the

TrustfulnessMappingService. The main service, SourcesReliabilityService, handles all

incoming and outgoing traffic of the Sources Verifier component and is the only service

exposed to the rest of the platform components. Furthermore, the SourcesReliabilityService

implements the single exposed interface for sources reliability requests that is exposed by the

SourcesReliabilityController, the ISourcesReliabilityService interface. To this end, it should be

mentioned that the three internal services of the SourcesReliabilityService are not exposed to

the rest of the platform components, whilst the SourcesReliabilityService is interacting with

each one of these internal services via their internally exposed interfaces, as described below.

2.1.2.1. SourcesReliabilityService

The SourcesReliabilityService is the main service of the Sources Verifier component, being

responsible for providing all the necessary actions for choosing and finally keeping connected

to the CrowdHEALTH platform only the reliable both known and unknown data sources. In

more detail, the sources verification workflow consists of three sequential steps, each one

being represented by the corresponding existing internal service of the

SourcesReliabilityService. Therefore, the SourcesReliabilityService’s responsibility is to

D3.21 Reliable Information Provision in
Healthcare: Software Prototype v1

02/03/2018

17/26

orchestrate and manage all these internal services, while successfully completing via the

ISourcesReliabilityService all the requests that are been made for using this service.

The SourcesReliabilityService implements the following one function:

 main(SourceID): void: This function is responsible for triggering the whole process of

identifying the sources’ reliability.

Apart from these functions, the ISourcesReliabilityService is implementing the single external

interface of the Sources Verifier component, namely the ISourcesReliabilityService, containing

one main function:

 IReliableSources(): void: This function is responsible for enabling the connection

among the sources reliability services.

Moreover, the ISourcesReliabilityService interface is being exposed by the

SourcesReliabilityController, containing one main function:

 identifyReliableSources(SourceID): Response: This function is responsible for handling

incoming HTTP requests to execute the sources reliability workflow and provide the

results back to the requestor.

More details of the exposed external interface can be found in Section 2.2.2.

2.1.2.2. SourcesRecognitionService

The SourcesRecognitionService is one of the internal services of SourcesReliabilityService,

being responsible for the identification of the various available data sources that need to be

connected to the CrowdHEALTH platform. The SourcesRecognitionService performs several

sequential steps for identifying both known and unknown data sources’ specifications (i.e.

software and hardware specifications). More specifically, the SourcesRecognitionService

implements the following four main functions:

 getSourcesTotalNumber(SourceID): Integer: This function is responsible for getting the

total number of available sources that have requested to connect to the platform.

 getSourcesType(SourceID): String: This function is responsible for getting the type of

the available sources that have requested to connect to the platform.

 getSourcesSpecifications(SourceID): String: This function is responsible for getting the

specifications of the available sources that have requested to connect to the platform.

 categorizeSources(SourceID): String: This function is responsible for categorizing the

sources into either known or unknown, based on the results of the previous functions.

D3.21 Reliable Information Provision in
Healthcare: Software Prototype v1

02/03/2018

18/26

Apart from these functions, the SourcesRecognitionService implements the single external

interface of the Sources Verifier component, namely the ISourcesRecognitionService,

containing one main function:

 IRecognizeSources(): List: This function is responsible for connecting the internal

SourcesRecognitionService and the main SourcesReliabilityService.

2.1.2.3. SpecificationClassificationService

The SpecificationClassificationService is one of the internal services of

SourcesReliabilityService, being responsible for the classification of the data sources’

specifications based on the known data sources’ specifications. Hence, the

SpecificationClassificationService performs several sequential steps in order to classify the

data sources based upon the similar specifications they have. To this end, two different

scenarios arise, being represented from the corresponding functions of the service. More

specifically, the SpecificationClassificationService implements the following five functions:

 setReferenceGroup(): String: This function is responsible for setting different groups of

sources as reference values, in order for the classification/categorization to take place.

 identifyResemblance(): void: This function is responsible for identifying the

resemblance of each source to the different reference values that were previously set.

 analyzeResults(): void: This function is responsible for analysing the results of the

resemblance identification.

 categorizeToExactlySame(): void: This function is responsible for categorizing the

sources that have exactly the same specifications with the sources that are used as

reference values.

 categorizeToPartiallySame(): void: This function is responsible for categorizing the

sources that have partially the same specifications with the sources that are used as

reference values.

Apart from these functions, the SpecificationClassificationService implements the single

external interface of the Sources Verifier component, namely the

ISpecificationClassificationService, containing one main function:

 IClassifySpecifications(): List : This function is responsible for connecting the internal

SpecificationsClassificationService, and the main SourcesReliabilityService.

2.1.2.4. TrustfulnessMappingService

The TrustfulnessMappingService is one of the internal services of SourcesReliabilityService,

being responsible for the mapping of the data sources (that are from-now-on known) to

different levels of trustfulness. Therefore, the TrustfulnessMappingService is performing

several sequential steps in order decide whether each data source is considered as reliable or

not, based upon a threshold level that is being set for each different “trustfulness” criterion (i.e.

D3.21 Reliable Information Provision in
Healthcare: Software Prototype v1

02/03/2018

19/26

data reliability, provided information type, data availability). More specifically, the

TrustfulnessMappingService implements the following four main functions:

 setTrustfulnessCriteria(): void: This function is responsible for setting the trustfulness

criteria, according to which a source will be considered as trustful or not.

 aggregateResultsForEachSource(): void: This function is responsible for aggregating

the results that have derived for each different trustfulness criterion, into a single entity.

 compareAggregationWithThreshold(): void: This function is responsible for comparing

the aggregated value of the previous results, with the threshold that has been set.

 adaptiveSelectionOfTrustfulSources(): void: This function is responsible for the

adaptive selection of the sources that meet the trustfulness criteria, and are thus

considered as trustful and reliable.

Apart from these functions, the TrustfulnessMappingService implements the single external

interface of the Sources Verifier component, namely the ITrustfulnessMappingService,

containing one main function:

 IMapTrustfulness: void : This function is responsible for connecting the internal

TrustfulnessMappingService, and the main SourcesReliabilityService.

2.2. Interfaces

2.2.1. Data Cleaner

In the context of Data Cleaner component, as described also in Section 2.1.1.1, the external

interface namely IDataCleanerService is implemented and is responsible for the execution of

the data cleaning workflow. The incoming HTTP requests are handled by the

DataCleanerController while the execution of the workflow is performed by

DataCleanerService.

Through the IDataCleanerService interface the following two endpoints are offered:

1. Authentication/Login endpoint

2. Data Cleaning endpoint

2.2.1.1. Authentication/Login endpoint

To access the interface endpoints, authentication is mandatory. The Authentication/Login

endpoint is implementing the authentication process by utilizing JSON Web Token (JWT)1

towards a token-based authentication. JWT is an open standard (RFC 75192) that defines a

compact and self-contained way for securely transmitting information between parties as a

1
 JSON Web Tokens, https://jwt.io/

2
 https://tools.ietf.org/html/rfc7519

D3.21 Reliable Information Provision in
Healthcare: Software Prototype v1

02/03/2018

20/26

JSON object. Once the user is authenticated, the user receives the generated JWT which will

be included in the subsequent requests to the interface endpoints in order to verify the identity

of the user and also perform the appropriate access control check over the rest of the

resources or endpoints of the interface. At this point it should be noted however that for the

first version of the Data Cleaner component only a predefined user is configured in order to be

used by the CrowdHEALTH components ensuring secure communication.

The Authentication/Login endpoint is documented in Table 1:

Authentication/Login Endpoint

Description Creates a JWT for the user which is included in the response headers.
For all subsequent requests the JWT should be included in the
Authorization header in order to successfully access the rest of the
endpoints.

Endpoint URL http://hostname[:port]/login

HTTP method GET

Parameters N/A

Request Body Expects a request body in the following format:
{
 “username”: “user”,
 “password”: “pass”
}

Table 1- Authentication/Login Endpoint

2.2.1.2. Data Cleaning endpoint

This is the endpoint is responsible for handling the data cleaning workflow execution requests

and for providing the updated data as a result of the execution. To access the Data Cleaning

endpoint a valid JWT, as obtained by the Authentication/Login Endpoint, is mandatory. The

endpoint expects the dataset for which the data cleaning workflow will be executed in HHR-

compliant XML format.

The Data Cleaning endpoint is documented in Table 2:

Data Cleaning Endpoint

Description Initiates the data cleaning workflow and provides the results

Endpoint URL http://hostname[:port]/cleaner/clean/{providerId}/{datasetId}

HTTP method POST

Parameters Authorization: Valid JWT as received by Authentication/Login Endpoint.
The combination of the providerId and datasetId parameters is predefined

according to the project use cases identified:

 bio

◦ allergies

 dfki

◦ activity

 hulafe

◦ emergency

http://hostname[:port]/login

D3.21 Reliable Information Provision in
Healthcare: Software Prototype v1

02/03/2018

21/26

◦ biosignals

◦ medication

◦ phr

 cra

◦ patient

◦ diagnosis

◦ treatment

◦ comorbidity

◦ behaviour

◦ coaching

◦ sideeffect

◦ allergen

◦ allergy

◦ annotation

◦ biodata

◦ datasource

◦ diet

◦ diettype

◦ dish

◦ ingredient

◦ patient

◦ recipe

◦ recipestep

◦ hah

◦ hospitalization

◦ labtest

◦ morbidity

◦ outpatient

◦ patient

Request Body HHR compliant dataset in XML format

Table 2 – Data Cleaning Endpoint

2.2.2. Sources Verifier

In the context of Data Cleaner component, apart from the internal interfaces offered by each

different internal service as described also in Section 2.1.2.1, the external interface namely

ISourcesReliabilityService is implemented being responsible for managing all the requests

that are been made for using this service.

Through the ISourcesReliabilityService interface, one single endpoint is being offered:

1. Sources Reliability endpoint

2.2.2.1. Sources Reliability endpoint

The Sources Reliability endpoint is responsible for handling the sources reliability workflow

execution requests and for providing the list of the reliable sources as a result of the

execution.

The Sources Reliability endpoint is documented in Table 3:

Sources Reliability Endpoint

Description Initiates the sources reliability workflow and provides the results

Endpoint URL http://hostname[:port]/verifier/identifyReliableSources/{SourceID}

HTTP method POST

Parameters Sources’ provided data

Request Body Sources that have requested to connect into a List format

Table 3: Sources Reliability Endpoint

D3.21 Reliable Information Provision in
Healthcare: Software Prototype v1

02/03/2018

22/26

2.3. Baseline technologies and tools

2.3.1. Data Cleaner

Data Cleaner component is developed with Python 3.5 using the Flask python micro web

framework3. Flask is a powerful framework written in Python and based on the Werkzeug4

toolkit and Jinja25 template engine, that is independent from particular libraries or tools and

that supports a large list of extensions for application features. Besides the Flask framework, a

list of libraries and tools has been used in the context of Data Cleaner to support several

functionalities of the component. For the data structure handling Pandas6 has been selected

while NumPy7 is used for numerical computations. For transformations from XML to Python

dictionaries XmlToDict8 was selected and in order to enable JWT in Flask framework Flask-

JWT9 was used.

2.3.2. Sources Verifier

Sources Verifier component is developed with JAVA 8 as programming language,

NETBEANS10 v8.0.2 as IDE and TOMCAT11 9 as application server. To this end, for the whole

component an Apache Maven 12 project was constructed. Maven is a software project

management and comprehension tool that is based on the concept of a project object model

(POM).

3
 Flask, http://flask.pocoo.org/

4
 Werkzeug, http://werkzeug.pocoo.org/

5
 Jinja2, http://jinja.pocoo.org/

6
 Pandas, https://pandas.pydata.org/

7
 NumPy, http://www.numpy.org/

8
 XmlToDict, https://pypi.python.org/pypi/xmltodict

9
 Flask-JWT, https://pythonhosted.org/Flask-JWT/

10
 Netbeans, https://netbeans.org/

11
 Tomcat, http://tomcat.apache.org/

12
 Apache Maven, https://maven.apache.org/

D3.21 Reliable Information Provision in
Healthcare: Software Prototype v1

02/03/2018

23/26

3. Source code

3.1. Data Cleaner

Data Cleaner component is a Python project following the standard python module

methodology. The source code resides in the cleaner directory. More specific the source code

is divided into the services implemented in the course of Data Cleaner that reside under the

services directory and the utility functions used by the services that reside under the util

directory. The init.py file is located in the cleaner directory. It initiates the Data Cleaner

component. However, to make it more simple and easy to use the Data Cleaner component is

also offered as a Docker image. For more information on how to use the available Docker

image please refer to Section 3.1.2. Additionally, at the top level directory the appropriate

README.md file exists containing a short description of the project, the necessary information

on how to build and run the project either using Docker or manually.

At this point, it should be noted that the current version of the source code available in the

repository, as documented in Section ¡Error! No se encuentra el origen de la referencia.,

orresponds to the first, fully functional version of the Data Cleaner prototype driven by the

architecture and the design as documented in D3.19. The list of provided functionalities will be

further enriched with more techniques and processes as the project evolves and as new or

revised requirements may arise from the data providers, so this source code is subject to

changes.

3.1.1. Availability

Data Cleaner is provided in CrowdHEALTH’s GitLab repository and can be found under the

following URL:

https://crowdhealthtasks.ds.unipi.gr/CrowdHEALTH/DataCleaner

3.1.2. Exploitation

The Data Cleaner prototype is a Python project. As a result, in order to be able to run the

prototype manually, Python should be properly preinstalled and preconfigured on the system

and PYTHONPATH should include all the modules of Data Cleaner prototype. In order to

facilitate the exploitation process, the prototype is provided as a Docker image with option to

build the project and run the code. More specific, in order to build the project, run the following

command while being on the top-level directory of the cloned repository:

docker build -t crowdhealthtasks.ds.unipi.gr:4567/crowdhealth/datacleaner .

 To run the prototype run the following command:

docker run -d -p 5000:80 crowdhealthtasks.ds.unipi.gr:4567/crowdhealth/datacleaner

https://crowdhealthtasks.ds.unipi.gr/CrowdHEALTH/DataCleaner

D3.21 Reliable Information Provision in
Healthcare: Software Prototype v1

02/03/2018

24/26

This command will start the Data Cleaner prototype as a web application and the exposed

external interface will be available at localhost:8080.

The information described above is also available in the README.md file at the top level of

the repository.

3.2. Sources Verifier

Sources Verifier component is a Maven project following the standard maven structure. More

specifically, at the top level files there is the pom.xml file, as well as textual documents meant

for the user to be able to read immediately on receiving the source

(README.txt, LICENSE.txt). The pom.xml file contains information about the project and

configuration details used by Maven to build the project, containing default values such as the

build directory. Moreover, there are two subdirectories of this structure: src and target. The

target directory is used to house all output of the build, while the src directory contains all of

the source code for building the project. In that case, the main SourcesReliabilityService

resides, along with the three (3) additional internal sub-services are placed.

3.2.1. Availability

Sources Verifier is provided in CrowdHEALTH’s GitLab repository and can be found under the

same URL as the Data Cleaner:

https://crowdhealthtasks.ds.unipi.gr/CrowdHEALTH/DataCleaner

3.2.2. Exploitation

The Sources Verifier prototype is a Maven project, and in order to avoid running the prototype

manually, as well as preinstalling and preconfiguring Maven on the system, the prototype is

provided as a Docker image with option to build the project and run the code. More

specifically, as in the case of the Data Cleaner, in order to build the project, run the following

command while being on the top-level directory of the cloned repository:

docker build -t crowdhealthtasks.ds.unipi.gr:4567/crowdhealth/sourcesverifier

 To run the prototype run the following command:

docker run -d -p 4000:80 crowdhealthtasks.ds.unipi.gr:4567/crowdhealth/

sourcesverifier

This command will start the Sources Verifier prototype as a web application and the exposed

external interface will be available at localhost:8080.

The information described above is also available in the README.md file at the top level of

the repository.

https://crowdhealthtasks.ds.unipi.gr/CrowdHEALTH/DataCleaner

D3.21 Reliable Information Provision in
Healthcare: Software Prototype v1

02/03/2018

25/26

4. Conclusions

The scope of D3.21 was to document the preliminary efforts carried out within the context of

Task 3.5 - Data Cleaning Including Sources Reliability Assessment. The first version of the

software implementation of the Data Cleaner and Source Verifier component was based on

the architecture and design specifications documented in D3.19.

As already described in the previous sections, the Data Cleaner and Sources Verifier

component is composed by two sub-components. For the first sub-component, namely the

Data Cleaner, the first version includes the main service, namely the DataCleanerService,

which is responsible for the orchestration of the internal services towards the execution of the

data cleaning workflow, and the five internal services, namely the ValidatorService, the

CleanserService, the CompleterService, the VerifierService and the LoggerService. These

internal services are responsible for the data validation processing, the de-cleansing

processing, the data completeness assurance, the verification and evaluation of the corrective

actions and the recording of these actions as well as the errors identified. The

DataCleanerService is implementing the exposed external interface of the Data Cleaner

component, namely the IDataCleanerService.

For the second sub-component, namely the Source Verifier, the first version includes the main

service, namely the SourceReliabilityService, which undertakes the necessary actions for

identifying and keeping connected to the CrowdHEALTH platform only the reliable the data

sources and the three internal services, namely the SourceRecognitionService, the

SpecificationClassificationService and the TrustfulnessMappingService. These internal

services are responsible for the identification of the various available data sources to be

connected to the CrowdHEALTH platform, the classification of the data sources’ specifications

based on the known data sources’ specifications and the mapping of the known data sources

to different levels of trustfulness. Moreover, the SourceReliabilityService is implementing the

exposed external interface of Source Verifier component, namely the

ISourceReliabilityService.

In addition to the services implemented, the exposed external interfaces are documented

along with the technologies and tools used for the implementation.

D3.21 is a demonstrator deliverable and the current document is the accompanying report

documenting the software implementation information of the Data Cleaner and Source Verifier

component containing the description of the services and the interfaces implemented, the

source code availability and exploitation. It should be noted that the development of the Data

Cleaner and Source Verifier component is a living process and the forthcoming second and

final version, which will be documented in D3.22 - Reliable Information Provision in

Healthcare: Software Prototype v2, will contain refinements and enhancements towards the

aim of providing additional functionalities but also addressing additional end user

requirements.

D3.21 Reliable Information Provision in
Healthcare: Software Prototype v1

02/03/2018

26/26

5. References

[1] Perakis K., Miltiadou D., Mavrogiorgou A. (2017). D3.19 Reliable Information Provision

in Healthcare: Design & Open Specification v.1. EC H2020 CrowdHEALTH Project

